The Δ r G 0 for the following reaction has to be determined. (a) 3Cu(s) + 2NO 3 - (aq) + 8H + (aq) → 3Cu 2+ (aq) + 2NO(g) + 4H 2 O(l) . Concept introduction: According to the first law of thermodynamics , the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system. The equation is as follows. ΔU = Q - W ΔU = Change in internal energy Q = Heat added to the system W=Work done by the system In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell. ΔG 0 = -nFE 0 n = Number of moles transferred per mole of reactant and products F = Faradayconstant=96485C/mol E 0 = Volts = Work(J)/Charge(C) The relation between standard cell potential and equilibrium constant is as follows. lnK = nE 0 0 .0257 at 298K
The Δ r G 0 for the following reaction has to be determined. (a) 3Cu(s) + 2NO 3 - (aq) + 8H + (aq) → 3Cu 2+ (aq) + 2NO(g) + 4H 2 O(l) . Concept introduction: According to the first law of thermodynamics , the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system. The equation is as follows. ΔU = Q - W ΔU = Change in internal energy Q = Heat added to the system W=Work done by the system In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell. ΔG 0 = -nFE 0 n = Number of moles transferred per mole of reactant and products F = Faradayconstant=96485C/mol E 0 = Volts = Work(J)/Charge(C) The relation between standard cell potential and equilibrium constant is as follows. lnK = nE 0 0 .0257 at 298K
Solution Summary: The author explains that the change in internal energy of a system is equal ti the heat added to the system minus the work done by the system.
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 19, Problem 91GQ
(a)
Interpretation Introduction
Interpretation:
The ΔrG0 for the following reaction has to be determined.
According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.
The equation is as follows.
ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system
In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.
ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol E0= Volts = Work(J)/Charge(C)
The relation between standard cell potential and equilibrium constant is as follows.
lnK = nE00.0257 at 298K
(b)
Interpretation Introduction
Interpretation:
The ΔrG0 for the following reaction has to be determined.
According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.
The equation is as follows.
ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system
In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.
ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol E0= Volts = Work(J)/Charge(C)
The relation between standard cell potential and equilibrium constant is as follows.
Bookmarks
Profiles Tab Window Help
Chemical Formula - Aktiv Che X
+
→ C
11
a
app.aktiv.com
Google Chrome isn't your default browser Set as default
Question 12 of 16
Q Fri Feb 2
Verify it's you
New Chrome availabl-
Write the balanced molecular chemical equation for the reaction in aqueous solution for
mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be
sure to include the proper phases for all species within the reaction.
3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq)
ean Ui
mate co
ence an
climate
bility inc
ulnerabili
women,
main critic
CLIMATE-INI
ernational
+
10
O
2
W
FEB
1
+
4-
3-
2-
2
2
(
3
4
NS
28
2
ty
56
+
2+
3+
4+
7
8
9 0
5
(s)
(1)
Ch
O
8
9
(g) (aq)
Hg
NR
CI
Cr
x H₂O
A
80
Q
A
DII
A
F2
F3
FA
F5
F6
F7
F8
F9
#3
EA
$
do 50
%
6
CO
&
7
E
R
T
Y
U
8
(
9
0
F10
34
F11
川
F12
Subr
+
delete
0
{
P
}
Deducing the reactants of a Diels-Alder reaction
n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one
step, by moderately heating the reactants?
?
Δ
• If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any
arrangement you like.
• If your answer is no, check the box under the drawing area instead.
Explanation Check
Click and drag to start drawing a structure.
>
Predict the major products of the following organic reaction:
+
Some important notes:
A
?
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
• Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are
enantiomers.
Explanation
Check
Click and drag to start drawing a structure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell