Concept explainers
Consider an
- (a) Diagram the cell, and label each of the components (including the anode, cathode, and salt bridge).
- (b) Use the equations for the half-reactions to write a balanced, net ionic equation for the overall cell reaction.
- (c) What is the polarity of each electrode?
- (d) What is the value of E°cell?
- (e) In which direction do electrons flow in the external circuit?
- (f) Assume that a salt bridge containing NaNO3 connects the two half-cells. In which direction do the Na+(aq) ions move? In which direction do the NO3− (aq) ions move?
- (g) Calculate the equilibrium constant for the reaction.
- (h) If the concentration of Cd2+ is reduced to 0.010 M and [Ni2+] = 1.0 M, what is the value of Ecell? Is the net reaction still the reaction given in part (b)?
- (i) If 0.050 A is drawn from the battery, how long can it last if you begin with 1.0 L of each of the solutions and each was initially 1.0 M in dissolved species? Each electrode weighs 50.0 g in the beginning.
(a)
Interpretation:
The half reactions are as follows.
The cell has to be drawn and label each of the component.
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Explanation of Solution
The half reactions are as follows.
The voltaic cell are as follows:
(b)
Interpretation:
To determine the following.
The half reactions are as follows.
The balance equation has to be given.
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Balanced reaction:
Explanation of Solution
Let’s write the half reactions occur at anode and cathode:
By adding these two half reactions we get balanced reaction.
(c)
Interpretation:
The half reactions are as follows.
The polarity of each electrode has to be determined.
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Anode is negative cathode is positive.
Explanation of Solution
In the voltaic cell has two voltaic cells. One electrode has positive charge called cathode and another electrode has negative called anode.
(d)
Interpretation:
The half reactions are as follows.
The
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Explanation of Solution
The reactions occur at anode and cathode is as follows.
Let’s calculate the
(e)
Interpretation:
The half reactions are as follows.
The direction in which electrons flow in the external circuit has to be given.
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Electrons are flow from anode to cathode.
Explanation of Solution
In the voltaic cell electrons are move anode to cathode.
(f)
Interpretation:
To determine the following.
The half reactions are as follows.
Assume that a salt bride containing
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Explanation of Solution
Salt bridge contains
(g)
Interpretation:
The half reactions are as follows.
The equilibrium constant has to be determined.
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
The equilibrium constant of the reaction is
Explanation of Solution
(h)
Interpretation:
The half reactions are as follows.
If the concentration of
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
Explanation of Solution
Net reaction will be still given in part (b)
(i)
Interpretation:
The half reactions are as follows.
The time the battery will last if
Concept introduction:
Voltaic cell or Galvanic cell:
The device to produce electricity by using chemical reactions. In these divces are redox chemical reactions are occured.
A voltaic cell converts chemical energy into electrical energy.
It consists of two half cells. Each half cell consists of a metal and a solution of a salt of metal. Two half cells are connected by salt bridge.
The chemical reaction in the half cell is an oxidation reduction (redox)reactions.
For example:
Cell diagram of voltaic or galvanic cell is as follows.
Answer to Problem 105IL
The time required for the electrolysis is
Explanation of Solution
Let’s calculate the charge of the cell:
Therefore, the time can be calculated as follows.
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry & Chemical Reactivity
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardConsider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forwardA voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forward
- Use the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardA half-cell that consists of a copper wire in a 1.00 M Cu(NO3)2 solution is connected by a salt bridge to a solution that is 1.00 M in both Pu3+ and Pu4+, and contains an inert metal electrode. The voltage of the cell is 0.642 V, with the copper as the negative electrode. (a) Write the half-reactions and the overall equation for the spontaneous chemical reaction. (b) Use the standard potential of the copper half-reaction, with the voltage of the cell, to calculate the standard reduction potential for the plutonium half-reaction.arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forward
- Give the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forwardA voltaic cell is constructed using the reaction Mg(s) + 2H+(aq) Mg2+(aq) + H2(g) (a) Write equations for the oxidation and reduction half-reactions. (b) Which half-reaction occurs in the anode compartment, and which occurs in the cathode compartment? (c) Complete the following sentences: Electrons in the external circuit flow from the ________ electrode to the ______ electrode. Negative ions move in the salt bridge from the ______ half-cell to the ______ half-cell. The half-reaction at the anode is ____, and that at the cathode is _____.arrow_forwardChlorine, Cl2, is produced commercially by the electrolysis of aqueous sodium chloride. The anode reaction is 2Cl(aq)Cl2(g)+2e How long will it take to produce 2.00 kg of chlorine if the current is 5.00 102 A?arrow_forward
- In principle, a battery could be made from aluminum metal and chlorine gas. (a) Write a balanced equation for the reaction thatwould occur in a battery using Al3+(aq) | Al(s) andCl2(g) | Cl(aq) half-cells. (b) Identify the half-reaction at the anode and at the cathode. Do electrons flow from the Al electrode when thecell does work? Explain. (c) Calculate the standard potential, Ecell, for the battery.arrow_forwardGiven this reaction, its standard potential, and the standard half-cell potential of 0.34 V for the Cu2+ |Cu half-cell, calculate E° for the Fe(s)|Fe2+(aq) half-cell.arrow_forwardThe following two half-reactions arc involved in a voltaic cell. At standard conditions, what species is produced at each electrode? Ag++eAgE=0.80VNi2++2eNiE=0.25Varrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax