Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 38P
Figure 19-24 gives the probability distribution for nitrogen gas. The scale of the horizontal axis is set by vs = 1200 m/s. What are the (a) gas temperature and (b) rms speed of the molecules?
Figure 19-24 Problem 38.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
38 Figure 19-24 gives the probability distribution for nitrogen
gas. The scale of the horizontal axis is set by v, = 1200 m/s. What are
the (a) gas temperature and (b) rms speed of the molecules?
v (m/s)
(A)d
The following figure is a histogram showing the speeds of the molecules in a very small gas. What are (a) the most probable speed, (b) the average speed, and (c) the rms speed?
Evaluate rms speed, the average kinetic energy of a molecule and total random kinetic
energy of all the molecules in 6 moles of air gas at a temperature of 700 K.
(Molar mass of air is 28.97 x 10-3 mole/kg, and kB = 1.38 x 10-23 J/K)
Chapter 19 Solutions
Fundamentals of Physics Extended
Ch. 19 - For four situations for an ideal gas, the table...Ch. 19 - In the p-V diagram of Fig. 19-17, the gas does 5 J...Ch. 19 - For a temperature increase of T1, a certain amount...Ch. 19 - The dot in Fig, 19-18a represents the initial...Ch. 19 - A certain amount of energy is to be transferred as...Ch. 19 - The dot in Fig. 19-18b represents the initial...Ch. 19 - a Rank the four paths of Fig. 19-16 according to...Ch. 19 - The dot in Fig. 19-18c represents the initial...Ch. 19 - Prob. 9QCh. 19 - Does the temperature of an ideal gas increase,...
Ch. 19 - Prob. 1PCh. 19 - Gold has a molar mass of 197 g/mol. a How many...Ch. 19 - SSM Oxygen gas having a volume of 1000 cm3 at...Ch. 19 - A quantity of ideal gas at: 10.0C and 100 kPa...Ch. 19 - The best laboratory vacuum has a pressure of about...Ch. 19 - Water bottle in a hot car. In the American...Ch. 19 - Suppose 1.80 mol of an ideal gas is taken from a...Ch. 19 - Compute a the number of moles and b the number of...Ch. 19 - An automobile tire has a volume of 1.64 102 m3...Ch. 19 - A container encloses 2 mol of an ideal gas that...Ch. 19 - SSM ILW WWW Air that initially occupies 0.140 m3...Ch. 19 - GO Submarine rescue. When the U.S. submarine...Ch. 19 - Prob. 13PCh. 19 - In the temperature range 310 K to 330 K, the...Ch. 19 - Suppose 0.825 mol of an ideal gas undergoes an...Ch. 19 - An air bubble of volume 20 cm3 is at the bottom of...Ch. 19 - GO Container A in Fig. 19-22 holds an ideal gas at...Ch. 19 - The temperature and pressure in the Suns...Ch. 19 - a Compute the rms speed of a nitrogen molecule at...Ch. 19 - Calculate the rms speed of helium atoms at 1000 K....Ch. 19 - SSM The lowest possible temperature in outer space...Ch. 19 - Find the rms speed of argon atoms at 313 K. See...Ch. 19 - A beam of hydrogen molecules H2 is directed toward...Ch. 19 - At 273 K and 1.00 102 atm, the density of a gas...Ch. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Water standing in the open at 32.0C evaporates...Ch. 19 - At what frequency would the wavelength of sound in...Ch. 19 - SSM The atmospheric density at an altitude of 2500...Ch. 19 - Prob. 30PCh. 19 - In a certain particle accelerator, protons travel...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - The most probable speed of the molecules in a gas...Ch. 19 - Prob. 37PCh. 19 - Figure 19-24 gives the probability distribution...Ch. 19 - At what temperature does the rms speed of a...Ch. 19 - Two containers are at the same temperature. The...Ch. 19 - Prob. 41PCh. 19 - What is the internal energy of 1.0 mol of an ideal...Ch. 19 - Prob. 43PCh. 19 - GO One mole of ail ideal diatomic gas goes from a...Ch. 19 - ILW The mass of a gas molecule can be computed...Ch. 19 - Under constant pressure, the temperature of 2.00...Ch. 19 - The temperature of 2.00 mol of an ideal monatomic...Ch. 19 - GO When 20.9 J was added as heat to a particular...Ch. 19 - SSM A container holds a mixture of three...Ch. 19 - We give 70 J as heat to a diatomic gas, which then...Ch. 19 - Prob. 51PCh. 19 - GO Suppose 12.0 g of oxygen O2 gas is heated at...Ch. 19 - SSM WWW Suppose 4.00 mol of an ideal diatomic gas...Ch. 19 - We know that for an adiabatic process pV = a...Ch. 19 - A certain gas occupies a volume of 4.3 L at a...Ch. 19 - Suppose 1.00 L of a gas with = 1.30, initially at...Ch. 19 - The volume of an ideal gas is adiabatically...Ch. 19 - GO Opening champagne. In a bottle of champagne,...Ch. 19 - GO Figure 19-26 shows two paths that may be taken...Ch. 19 - GO Adiabatic wind. The normal airflow over the...Ch. 19 - GO A gas is to be expanded from initial state i to...Ch. 19 - GO An ideal diatomic gas, with rotation but no...Ch. 19 - Figure 19-27 shows a cycle undergone by 1.00 mol...Ch. 19 - Calculate the work done by an external agent...Ch. 19 - An ideal gas undergoes an adiabatic compression...Ch. 19 - Prob. 66PCh. 19 - An ideal monatomic gas initially has a temperature...Ch. 19 - Prob. 68PCh. 19 - SSM The envelope and basket of a hot-air balloon...Ch. 19 - An ideal gas, at initial temperature T1 and...Ch. 19 - Prob. 71PCh. 19 - At what temperature do atoms of helium gas have...Ch. 19 - Prob. 73PCh. 19 - Prob. 74PCh. 19 - The temperature of 3.00 mol of a gas with CV =...Ch. 19 - During a compression at a constant pressure of 250...Ch. 19 - SSM Figure 19-28 shows a hypothetical speed...Ch. 19 - Prob. 78PCh. 19 - SSM An ideal gas undergoes isothermal compression...Ch. 19 - Oxygen O2 gas at 273 K and 1.0 atm is confined to...Ch. 19 - An ideal pas is taken through a complete cycle in...Ch. 19 - Prob. 82PCh. 19 - SSM A sample of ideal gas expands from an initial...Ch. 19 - An ideal gas with 3.00 mol is initially in state 1...Ch. 19 - A steel lank contains 300 g of ammonia gas NH3 at...Ch. 19 - In an industrial process the volume of 25.0 mol of...Ch. 19 - Figure 19-29 shows a cycle consisting of five...Ch. 19 - An ideal gas initially at 300 K is compressed at a...Ch. 19 - A pipe of length L = 25.0 m that is open at one...Ch. 19 - In a motorcycle engine, a piston is forced down...Ch. 19 - For adiabatic processes in an ideal gas, show that...Ch. 19 - Air at 0.000C and 1.00 atm pressure has a density...Ch. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - For air near 0C, by how much does the speed of...Ch. 19 - Prob. 97P
Additional Science Textbook Solutions
Find more solutions based on key concepts
7. Two rubber bands pulling on an object cause it to accelerate at 1.2 m/s2.
a. What will be the object’s acc...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4. 38 Strontium has four naturally occurring isotopes, with mass numbers 84, 86, 87, arid 88.
a. Write the atom...
General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
Practice Exercise 2
Calculate the pH of a solution containing 0.085 M nitrous acid (HNO2, Ka = 4.5 x 10-4) an...
Chemistry: The Central Science (14th Edition)
Did all the organisms living in or on the environments sampled grow on your nutrient agar? Briefly explain.
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find (a) the most probable speed, (b) the average speed, and (c) the rms speed for nitrogen molecules at 295 K.arrow_forwardA sealed container contains a fixed volume of a monatomic ideal gas. If the gas temperature is increased by a factor of two, what is the ratio of the final to the initial (a) pressure, (b) average molecular kinetic energy, (c) root-mean-square speed, and (d) internal energy.arrow_forwardThe mean free path λ and the mean collision time T of molecules of a diatomic gas with molecular mass 6.00 x10^-25 kg and radius r=1.0x10^-10m are measured.From these microscopic data we can obtain macroscopic properties such as temperature T and pressure P? If yes, consider λ=4.32x10^-8m and T=3.00x10^-10s and calculate T and P.a)It's not possible.b)Yes,T=150K and P~2.04atm.c)Yes,T=150K and P~4.08atm.d)Yes,T=300K and P~4.08atm.e)Yes,T=300K and P~5.32atmf)Yes,T=400K and P~4.08atmg)Yes,T=400K and P~5.32atm.arrow_forward
- An ideal gas consists of 2.50 mol of diatomic molecules that rotate but do not oscillate. The molecular diameter is 118 pm. The gas is expanded at a constant pressure of 1.79 x 105 Pa, with a transfer of 150 J as heat. What is the change in the mean free path of the molecules?arrow_forwardThree moles of an argon gas are at a temperature of 305 K. Calculate the average kinetic energy per atom, the root-mean-square (rms) speed of atoms in the gas, and the internal energy of the gas. (a) the average kinetic energy per atom (in J) ? J (b) the root-mean-square (rms) speed (in m/s) of atoms in the gas ?m/s (c) the internal energy of the gas (in J) ?Jarrow_forwardAt what temperature would the rms speed of helium atoms equal (a) the escape speed from Earth, 1.12 × 104 m/s and (b) the escape speed from the Moon, 2.37 × 103 m/s? (See Chapter 7 for a discussion of escape speed.) Note: The mass of a helium atom is 6.64 × 10–27 kg.arrow_forward
- The molecules of a given mass of a gas have r.m.s. velocity of 200 ms at 27°C and 1.0×105 Nm-2 pressure. When the temperature and pressure of the gas are respectively, 127°C and 0.05x105 Nm-2, the rms velocity of its molecules in ms¹ is 400 √√3 (a)= 100√2 (c) 100 3 3 (b)- (d) 100-√2arrow_forward34. Go Four tanks A, B, C, and D are filled with monatomic ideal gases. For each tank, the mass of an individual atom and the rms speed of the atoms are expressed in terms of m and vmss respectively (see the table). Suppose that m = 3.32 × 10-26 kg, and vms = 1223 m/s. Find the tem- perature of the gas in each tank. В C D A 2m 2m m Mass m 20ms V ms 2v, rms Rms speed Vmsarrow_forwardAt what temperature would the rms speed of helium atoms equal (a) the escape speed from Earth, 1.12 x 104 m/s and (b) the escape speed from the Moon, 2.37 x 103 m/s? Note: The mass of a helium atom is 6.64 x 10-27 kg.arrow_forward
- Four moles of a helium gas are at a temperature of 430 K. Calculate the average kinetic energy per atom, the root-mean-square (rms) speed of atoms in the gas, and the internal energy of the gas. HINT (a) the average kinetic energy per atom (in J) (b) the root-mean-square (rms) speed (in m/s) of atoms in the gas m/s (c) the internal energy of the gas (in )arrow_forwardA gas with molecules of radius r and mass per molecule m is at temperature T and pressure p. (a) Write an expression for the mean free time for a molecule moving at the rms speed for this gas. (b) Which single change would have the greatest effect on the mean free time: doubling the radius r, doubling the pressure p, or doubling the temperature T?arrow_forwardA krypton-84 atom has a mass of 1.39 x 10-25 kg. (a) What temperature (in K) would a gas composed entirely of krypton-84 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from Earth, 1.12 x 10 m/s? K (b) What temperature (in K) would a gas composed entirely of krypton-84 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from the Moon, 2.37 x 10 m/s? Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY