Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 29P
SSM The atmospheric density at an altitude of 2500 km is about 1 molecule/cm3. (a) Assuming the molecular diameter of 2.0 × 10−8 cm3, find the mean free path predicted by Eq. 19-25. (b) Explain whether the predicted value is meaningful.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The mean free path of molecules of a gas, (radius 'r ') is
inversely proportional to :
Vr
(a) How many O2 molecules per cubic meter are there in surface air at 20.0 degrees Celsius and 1.00 atm?
(b) For a diver going to a depth of 118 m, what percentage of the gas molecules in the tank should be O2 ?
What would the pressure ? of an ideal gas be if the mean free path was 1.30×102 cm? Assume that the gas is at room temperature, ?=20.0 ∘C, and that the diameter of the molecule is ?=3.00×10−10 m.
Chapter 19 Solutions
Fundamentals of Physics Extended
Ch. 19 - For four situations for an ideal gas, the table...Ch. 19 - In the p-V diagram of Fig. 19-17, the gas does 5 J...Ch. 19 - For a temperature increase of T1, a certain amount...Ch. 19 - The dot in Fig, 19-18a represents the initial...Ch. 19 - A certain amount of energy is to be transferred as...Ch. 19 - The dot in Fig. 19-18b represents the initial...Ch. 19 - a Rank the four paths of Fig. 19-16 according to...Ch. 19 - The dot in Fig. 19-18c represents the initial...Ch. 19 - Prob. 9QCh. 19 - Does the temperature of an ideal gas increase,...
Ch. 19 - Prob. 1PCh. 19 - Gold has a molar mass of 197 g/mol. a How many...Ch. 19 - SSM Oxygen gas having a volume of 1000 cm3 at...Ch. 19 - A quantity of ideal gas at: 10.0C and 100 kPa...Ch. 19 - The best laboratory vacuum has a pressure of about...Ch. 19 - Water bottle in a hot car. In the American...Ch. 19 - Suppose 1.80 mol of an ideal gas is taken from a...Ch. 19 - Compute a the number of moles and b the number of...Ch. 19 - An automobile tire has a volume of 1.64 102 m3...Ch. 19 - A container encloses 2 mol of an ideal gas that...Ch. 19 - SSM ILW WWW Air that initially occupies 0.140 m3...Ch. 19 - GO Submarine rescue. When the U.S. submarine...Ch. 19 - Prob. 13PCh. 19 - In the temperature range 310 K to 330 K, the...Ch. 19 - Suppose 0.825 mol of an ideal gas undergoes an...Ch. 19 - An air bubble of volume 20 cm3 is at the bottom of...Ch. 19 - GO Container A in Fig. 19-22 holds an ideal gas at...Ch. 19 - The temperature and pressure in the Suns...Ch. 19 - a Compute the rms speed of a nitrogen molecule at...Ch. 19 - Calculate the rms speed of helium atoms at 1000 K....Ch. 19 - SSM The lowest possible temperature in outer space...Ch. 19 - Find the rms speed of argon atoms at 313 K. See...Ch. 19 - A beam of hydrogen molecules H2 is directed toward...Ch. 19 - At 273 K and 1.00 102 atm, the density of a gas...Ch. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Water standing in the open at 32.0C evaporates...Ch. 19 - At what frequency would the wavelength of sound in...Ch. 19 - SSM The atmospheric density at an altitude of 2500...Ch. 19 - Prob. 30PCh. 19 - In a certain particle accelerator, protons travel...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - The most probable speed of the molecules in a gas...Ch. 19 - Prob. 37PCh. 19 - Figure 19-24 gives the probability distribution...Ch. 19 - At what temperature does the rms speed of a...Ch. 19 - Two containers are at the same temperature. The...Ch. 19 - Prob. 41PCh. 19 - What is the internal energy of 1.0 mol of an ideal...Ch. 19 - Prob. 43PCh. 19 - GO One mole of ail ideal diatomic gas goes from a...Ch. 19 - ILW The mass of a gas molecule can be computed...Ch. 19 - Under constant pressure, the temperature of 2.00...Ch. 19 - The temperature of 2.00 mol of an ideal monatomic...Ch. 19 - GO When 20.9 J was added as heat to a particular...Ch. 19 - SSM A container holds a mixture of three...Ch. 19 - We give 70 J as heat to a diatomic gas, which then...Ch. 19 - Prob. 51PCh. 19 - GO Suppose 12.0 g of oxygen O2 gas is heated at...Ch. 19 - SSM WWW Suppose 4.00 mol of an ideal diatomic gas...Ch. 19 - We know that for an adiabatic process pV = a...Ch. 19 - A certain gas occupies a volume of 4.3 L at a...Ch. 19 - Suppose 1.00 L of a gas with = 1.30, initially at...Ch. 19 - The volume of an ideal gas is adiabatically...Ch. 19 - GO Opening champagne. In a bottle of champagne,...Ch. 19 - GO Figure 19-26 shows two paths that may be taken...Ch. 19 - GO Adiabatic wind. The normal airflow over the...Ch. 19 - GO A gas is to be expanded from initial state i to...Ch. 19 - GO An ideal diatomic gas, with rotation but no...Ch. 19 - Figure 19-27 shows a cycle undergone by 1.00 mol...Ch. 19 - Calculate the work done by an external agent...Ch. 19 - An ideal gas undergoes an adiabatic compression...Ch. 19 - Prob. 66PCh. 19 - An ideal monatomic gas initially has a temperature...Ch. 19 - Prob. 68PCh. 19 - SSM The envelope and basket of a hot-air balloon...Ch. 19 - An ideal gas, at initial temperature T1 and...Ch. 19 - Prob. 71PCh. 19 - At what temperature do atoms of helium gas have...Ch. 19 - Prob. 73PCh. 19 - Prob. 74PCh. 19 - The temperature of 3.00 mol of a gas with CV =...Ch. 19 - During a compression at a constant pressure of 250...Ch. 19 - SSM Figure 19-28 shows a hypothetical speed...Ch. 19 - Prob. 78PCh. 19 - SSM An ideal gas undergoes isothermal compression...Ch. 19 - Oxygen O2 gas at 273 K and 1.0 atm is confined to...Ch. 19 - An ideal pas is taken through a complete cycle in...Ch. 19 - Prob. 82PCh. 19 - SSM A sample of ideal gas expands from an initial...Ch. 19 - An ideal gas with 3.00 mol is initially in state 1...Ch. 19 - A steel lank contains 300 g of ammonia gas NH3 at...Ch. 19 - In an industrial process the volume of 25.0 mol of...Ch. 19 - Figure 19-29 shows a cycle consisting of five...Ch. 19 - An ideal gas initially at 300 K is compressed at a...Ch. 19 - A pipe of length L = 25.0 m that is open at one...Ch. 19 - In a motorcycle engine, a piston is forced down...Ch. 19 - For adiabatic processes in an ideal gas, show that...Ch. 19 - Air at 0.000C and 1.00 atm pressure has a density...Ch. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - For air near 0C, by how much does the speed of...Ch. 19 - Prob. 97P
Additional Science Textbook Solutions
Find more solutions based on key concepts
MAKE CONNECTIONS Using what you know of gene expression in a cell, explain what causes the traits of parents (...
Campbell Biology (11th Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
Draw the structure of the monomer or monomers used to synthesize the following polymers, and indicate whether e...
Organic Chemistry (8th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
Choose the best answer to etch of the following. Explain your reasoning. 1.Plants and animal are (a) the two ma...
Cosmic Perspective Fundamentals
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- [11] An experimental balloon contains hydrogen gas (H2) at a temperature of 300 K and a pressure of 1 atm (1.01 X 10° N / m?). (a) Calculate the mean-free path of a hydrogen molecule. Assume that a H2 molecule is effectively spherical, with a mean diameter of 1.6 X 1010 m. (b) Calculate the available volume per molecule (VI N), and find the average distance between each molecule and its nearest neighboring molecule (approximately the cube root of the available volume). Which is larger, the mean free path or the average nearest-neighbor distance between molecules? Exploring relationshipsarrow_forwardA deep sea diver should breathe a gas mixture that has the same oxygen partial pressure as at sea level, where dry air contains 20.9% oxygen and has a total pressure of 1.01 ✕ 105 N/m2. (a) What is the partial pressure (in N/m2) of oxygen at sea level? (b) If the diver breathes a gas mixture at a pressure of 1.50 ✕ 106 N/m2, what percent oxygen should it be to have the same oxygen partial pressure as at sea level?arrow_forwardA gas with molecules of radius r and mass per molecule m is at temperature T and pressure p. (a) Write an expression for the mean free time for a molecule moving at the rms speed for this gas. (b) Which single change would have the greatest effect on the mean free time: doubling the radius r, doubling the pressure p, or doubling the temperature T?arrow_forward
- Show that the rms speed of molecules in a gas is given by ЗР Vrms where P is the pressure in the gas, and p is the gas density.arrow_forward(1) Hydrostatic balance states Әр Equation -1 -Pg, where p is pressure, z is altitude, pis density and g is the acceleration due to gravity. It can be shown that the reciprocal of hydrostatic balance also applies. That is Equation -2 Əz Əz Әр 1 pg Use the ideal gas law (p = pRT, where R is the gas constant for dry air and T is temperature) to eliminate p from (2). (2) Under geostrophic balance, the following balance is approximately satisfied Equation -3 fu = -g (³3), ду where f is the Coriolis parameter, u is the zonal wind, y is meridional distance and z is altitude. (Note that the derivative on the right hand side is taken at constant pressure.) Differentiate (3) with respect to p, and use your expression from part 1 to obtain an expression relating du/ap and OT/oy. This expression is called "thermal wind balance".arrow_forwardThe mean free path for a gas, with molecular diameter d and number density n can be expressed as: /2nnd 1 V2nnd? 1. V2n?nd? 1 V2n?n?d?arrow_forward
- The principal components of the atmosphere of the Earth are diatomic molecules, which can rotate as well as translate. Given that the translational kinetic energy density of the atmosphere is 0.15 J cm−3, what is the total kinetic energy density, including rotation?arrow_forwardThe atmospheric pressure on earth is 101kPa. The surface area of the earth is related to its mean radius r which has a value of 6400km. Calculate the mass of the earth’s atmosphere, assuming g does not vary with height above the Earth’s surface. Calculate the number of nitrogen and oxygen molecules present on this atmosphere (take note: molecules).arrow_forwardA mixture of water (density =1000 kg/m3) and vapor flowing with a mass rate = 7 kg/sec in a pipe of 1000 m long and 50 mm diameter, the gas fraction is 20%,then the volumetric rate of the water is:arrow_forward
- A mixture of water (density=1000 kg/m3) and vapor flowing with a mass rate = 7 kg/sec in a pipe of 1000 m long and 50 mm diameter, the gas fraction is 20%,then the volumetric rate of the water is: 1arrow_forwardASAParrow_forwardThe concentration of a frictionless fluid flowing through a channel is measured with a diffusion constant, D = 4.5E-3 m2/s at room temperature. The radius and length of the channel are given as r = 9.2E-2 m and 2.2 m, respectively. Hint: (KB = 1.3806E-23 m2.kg.s-2.K-1, T = 273 K).(a) Calculate the gradient of concentration of the fluid given the initial and final concentrations as C1 = 70 kg/m3 and C2 = 22 kg/m3, respectively.(b) Estimate the coefficient of viscosity of bloodarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY