Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 95P
To determine
To find:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The number density in a container of neon gas is 4.80×1025 m^−3. The atoms are moving with an rms speed of 680 m/s .
What is the pressure inside the container?
p= 2.46×105 Pa
What is the temperature inside the container? In K
A research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 1,648 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?
Below the surface of the sea water where the pressure is P=2.45x10^5 Pa and the temperature i 5C, a diver exhales an air bubble having volume of 1cm^3. If the surface temperature of the sea is 20C. What is the volume of the bubble just before it breaks the surface? Assume air in the bubble to be an ideal gas.
Chapter 19 Solutions
Fundamentals of Physics Extended
Ch. 19 - For four situations for an ideal gas, the table...Ch. 19 - In the p-V diagram of Fig. 19-17, the gas does 5 J...Ch. 19 - For a temperature increase of T1, a certain amount...Ch. 19 - The dot in Fig, 19-18a represents the initial...Ch. 19 - A certain amount of energy is to be transferred as...Ch. 19 - The dot in Fig. 19-18b represents the initial...Ch. 19 - a Rank the four paths of Fig. 19-16 according to...Ch. 19 - The dot in Fig. 19-18c represents the initial...Ch. 19 - Prob. 9QCh. 19 - Does the temperature of an ideal gas increase,...
Ch. 19 - Prob. 1PCh. 19 - Gold has a molar mass of 197 g/mol. a How many...Ch. 19 - SSM Oxygen gas having a volume of 1000 cm3 at...Ch. 19 - A quantity of ideal gas at: 10.0C and 100 kPa...Ch. 19 - The best laboratory vacuum has a pressure of about...Ch. 19 - Water bottle in a hot car. In the American...Ch. 19 - Suppose 1.80 mol of an ideal gas is taken from a...Ch. 19 - Compute a the number of moles and b the number of...Ch. 19 - An automobile tire has a volume of 1.64 102 m3...Ch. 19 - A container encloses 2 mol of an ideal gas that...Ch. 19 - SSM ILW WWW Air that initially occupies 0.140 m3...Ch. 19 - GO Submarine rescue. When the U.S. submarine...Ch. 19 - Prob. 13PCh. 19 - In the temperature range 310 K to 330 K, the...Ch. 19 - Suppose 0.825 mol of an ideal gas undergoes an...Ch. 19 - An air bubble of volume 20 cm3 is at the bottom of...Ch. 19 - GO Container A in Fig. 19-22 holds an ideal gas at...Ch. 19 - The temperature and pressure in the Suns...Ch. 19 - a Compute the rms speed of a nitrogen molecule at...Ch. 19 - Calculate the rms speed of helium atoms at 1000 K....Ch. 19 - SSM The lowest possible temperature in outer space...Ch. 19 - Find the rms speed of argon atoms at 313 K. See...Ch. 19 - A beam of hydrogen molecules H2 is directed toward...Ch. 19 - At 273 K and 1.00 102 atm, the density of a gas...Ch. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Water standing in the open at 32.0C evaporates...Ch. 19 - At what frequency would the wavelength of sound in...Ch. 19 - SSM The atmospheric density at an altitude of 2500...Ch. 19 - Prob. 30PCh. 19 - In a certain particle accelerator, protons travel...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - The most probable speed of the molecules in a gas...Ch. 19 - Prob. 37PCh. 19 - Figure 19-24 gives the probability distribution...Ch. 19 - At what temperature does the rms speed of a...Ch. 19 - Two containers are at the same temperature. The...Ch. 19 - Prob. 41PCh. 19 - What is the internal energy of 1.0 mol of an ideal...Ch. 19 - Prob. 43PCh. 19 - GO One mole of ail ideal diatomic gas goes from a...Ch. 19 - ILW The mass of a gas molecule can be computed...Ch. 19 - Under constant pressure, the temperature of 2.00...Ch. 19 - The temperature of 2.00 mol of an ideal monatomic...Ch. 19 - GO When 20.9 J was added as heat to a particular...Ch. 19 - SSM A container holds a mixture of three...Ch. 19 - We give 70 J as heat to a diatomic gas, which then...Ch. 19 - Prob. 51PCh. 19 - GO Suppose 12.0 g of oxygen O2 gas is heated at...Ch. 19 - SSM WWW Suppose 4.00 mol of an ideal diatomic gas...Ch. 19 - We know that for an adiabatic process pV = a...Ch. 19 - A certain gas occupies a volume of 4.3 L at a...Ch. 19 - Suppose 1.00 L of a gas with = 1.30, initially at...Ch. 19 - The volume of an ideal gas is adiabatically...Ch. 19 - GO Opening champagne. In a bottle of champagne,...Ch. 19 - GO Figure 19-26 shows two paths that may be taken...Ch. 19 - GO Adiabatic wind. The normal airflow over the...Ch. 19 - GO A gas is to be expanded from initial state i to...Ch. 19 - GO An ideal diatomic gas, with rotation but no...Ch. 19 - Figure 19-27 shows a cycle undergone by 1.00 mol...Ch. 19 - Calculate the work done by an external agent...Ch. 19 - An ideal gas undergoes an adiabatic compression...Ch. 19 - Prob. 66PCh. 19 - An ideal monatomic gas initially has a temperature...Ch. 19 - Prob. 68PCh. 19 - SSM The envelope and basket of a hot-air balloon...Ch. 19 - An ideal gas, at initial temperature T1 and...Ch. 19 - Prob. 71PCh. 19 - At what temperature do atoms of helium gas have...Ch. 19 - Prob. 73PCh. 19 - Prob. 74PCh. 19 - The temperature of 3.00 mol of a gas with CV =...Ch. 19 - During a compression at a constant pressure of 250...Ch. 19 - SSM Figure 19-28 shows a hypothetical speed...Ch. 19 - Prob. 78PCh. 19 - SSM An ideal gas undergoes isothermal compression...Ch. 19 - Oxygen O2 gas at 273 K and 1.0 atm is confined to...Ch. 19 - An ideal pas is taken through a complete cycle in...Ch. 19 - Prob. 82PCh. 19 - SSM A sample of ideal gas expands from an initial...Ch. 19 - An ideal gas with 3.00 mol is initially in state 1...Ch. 19 - A steel lank contains 300 g of ammonia gas NH3 at...Ch. 19 - In an industrial process the volume of 25.0 mol of...Ch. 19 - Figure 19-29 shows a cycle consisting of five...Ch. 19 - An ideal gas initially at 300 K is compressed at a...Ch. 19 - A pipe of length L = 25.0 m that is open at one...Ch. 19 - In a motorcycle engine, a piston is forced down...Ch. 19 - For adiabatic processes in an ideal gas, show that...Ch. 19 - Air at 0.000C and 1.00 atm pressure has a density...Ch. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - For air near 0C, by how much does the speed of...Ch. 19 - Prob. 97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An ideal diatomic gas with n = 1 mol has a molar mass of 32 g/mol and is in a container with a volume of V, pressure p, and temperature T. Another container with the same volume V contains a monatomic gas with n=1 mol, a molar mass of 8 g/mol, a pressure p, and a temperature T. What is the ratio of the RMS speed of the first gas to the second?arrow_forwardThe mean free path λ and the mean collision time T of molecules of a diatomic gas with molecular mass 6.00 x10^-25 kg and radius r=1.0x10^-10m are measured.From these microscopic data we can obtain macroscopic properties such as temperature T and pressure P? If yes, consider λ=4.32x10^-8m and T=3.00x10^-10s and calculate T and P.a)It's not possible.b)Yes,T=150K and P~2.04atm.c)Yes,T=150K and P~4.08atm.d)Yes,T=300K and P~4.08atm.e)Yes,T=300K and P~5.32atmf)Yes,T=400K and P~4.08atmg)Yes,T=400K and P~5.32atm.arrow_forwardn = 3.8 moles of an ideal gas are pumped into a chamber of volume V= (0.083 m³. The initial pressure of the gas is 1.01 × 10° Pa (about 1 atm). What is the initial temperature, in kelvin, of the gas? T = The pressure of the gas is increased ten times. Now what is the temperature, in kelvin, of the gas? T =arrow_forward
- A sealed 11 m tank is filled with 5000 moles of ideal oxygen gas (diatomic) at an initial temperature of 270 K. The gas is heated to a final temperature of 380 K. The atomic mass of oxygen is 16.0 g/mol. The mass density of the oxygen gas, in Sl units, is closest to:arrow_forward18. A (nearly) ideal gas has molar mass M = 0.044 kg/mol. If the temperature of the gas is T= 37.6°C, then find the rms-speed of the molecules of the gas. (Use R = 8.314 J/mol-K.)arrow_forwardDr. Chini's research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 745 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?arrow_forward
- A)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.) B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.) C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)arrow_forwardA mass m of helium gas is contained in a container of constant volume V, with a pressure P and absolute (Kelvin) temperature T at the start. More helium is added, increasing the total mass of helium gas to 3 m. The temperature is found to be 2T after this addition. In terms of the initial pressure P, what is the final gas pressure?arrow_forward4. This problem explores "effusion", the process by which gas in a container leaks out of a small hole. (a) Consider a wall of a container full of an ideal gas. Find an expression for vrms (the root-mean-squared speed of the gas molecules in the direction perpendicular to the wall) in terms of the gas temperature (T) and the molecular mass of the gas (m). (b) Consider a small portion (with area A) of the wall. Each molecule colliding with this portion of the wall exerts the following pressure on it: - m Δυ, ΑΔt where v, is the molecule's speed in the direction perpendicular to the wall. We assume an elastic collision, so over the course of the collision we have Avx = -2vx. An interesting quantity is N, the number of molecules colliding with this portion of the wall in (very short) time interval At. We can estimate that the gas pressure P, which is the total pressure exerted by N molecular collisions with the wall, is N times the average pressure exerted by a single molecule: 2Nm P = N…arrow_forward
- Container A contains an ideal gas at a pressure of 5 × 10° Pa and at a temperature of 300 K. It is connected by a thin tube to container B which is four times the volume of A, and contains the same ideal gas at a pressure of 1 x 105 Pa at a temperature of 400 K. The connecting valve is opened, and equilibrium is achieved at a common pressure while the temperature of each container is kept constant at its initial value. What is the final pressure in the system?arrow_forwardFour tanks A, B, C, and D are filled with monatomic ideal gases. For each tank, the mass of an individual atom and the rms speed of the atoms are expressed in terms of m and Vrms respectively (see the table). Suppose that m = 2.68 × 10-26 kg, and Vrms = 1000 m/s. Find the temperature of the gas in each tank. Mass Rms speed A m Urms B m 20rms C 2m Urms D 2m 2Urmsarrow_forwardA sealed 73 m tank is filled with 8000 moles of ideal oxygen gas (diatomic) at an initial temperature of 270 K. The gas is heated to a final temperature of 390 K. The atomic mass of oxygen is 16.0 g/mol. The mass density of the oxygen gas, in Sl units, is closest to: O 7.0 O 4.4 O 2.6 О 35 O 1.8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON