Thebalance cell reaction, E° and Δ G° for the cell needs to be determined that is composed of by combining two of the given cell reactions with the most positive E° . Co 2+ ( a q ) + 2 e - → Co ( s ) E° = -0 .28 V I 2 (s) + 2 e - → 2 I (aq) − E° = 0 .54 V Cu 2+ ( a q ) + 2 e - → Cu ( s ) E° = 0 .34 V Concept introduction: In the electrochemical cell, the reactions at cathode and anode occur due to the difference in their reduction electrode potential value. The EMF of the cell can be calculated with the help of electrode reduction potential values. The reaction at each electrode is called half-reaction and the combination of both half-reactions gives the cell reaction of given electrochemical cell. The standard cell potential for an electrochemical cell can be calculated as: E cell ° = E cathode ° - E anode ° E cell ° = E reduction ° - E oxidation ° Cathode involves the reduction process whereas oxidation occurs at the anode.
Thebalance cell reaction, E° and Δ G° for the cell needs to be determined that is composed of by combining two of the given cell reactions with the most positive E° . Co 2+ ( a q ) + 2 e - → Co ( s ) E° = -0 .28 V I 2 (s) + 2 e - → 2 I (aq) − E° = 0 .54 V Cu 2+ ( a q ) + 2 e - → Cu ( s ) E° = 0 .34 V Concept introduction: In the electrochemical cell, the reactions at cathode and anode occur due to the difference in their reduction electrode potential value. The EMF of the cell can be calculated with the help of electrode reduction potential values. The reaction at each electrode is called half-reaction and the combination of both half-reactions gives the cell reaction of given electrochemical cell. The standard cell potential for an electrochemical cell can be calculated as: E cell ° = E cathode ° - E anode ° E cell ° = E reduction ° - E oxidation ° Cathode involves the reduction process whereas oxidation occurs at the anode.
Solution Summary: The author explains that the balance cell reaction, E°, and Delta
Definition Definition Study of chemical reactions that result in the production of electrical energy. Electrochemistry focuses particularly on how chemical energy is converted into electrical energy and vice-versa. This energy is used in various kinds of cells, batteries, and appliances. Most electrochemical reactions involve oxidation and reduction.
Chapter 19, Problem 19.86SP
Interpretation Introduction
Interpretation:
Thebalance cell reaction, E° and ΔG° for the cell needs to be determined that is composed of by combining two of the given cell reactions with the most positive E°.
In the electrochemical cell, the reactions at cathode and anode occur due to the difference in their reduction electrode potential value. The EMF of the cell can be calculated with the help of electrode reduction potential values. The reaction at each electrode is called half-reaction and the combination of both half-reactions gives the cell reaction of given electrochemical cell. The standard cell potential for an electrochemical cell can be calculated as:
From the given compound, choose the proton that best fits each given description.
a
CH2
CH 2
Cl
b
с
CH2
F
Most shielded:
(Choose one)
Least shielded:
(Choose one)
Highest chemical shift:
(Choose one)
Lowest chemical shift:
(Choose one)
×
Consider this molecule:
How many H atoms are in this molecule?
How many different signals could be found in its 1H NMR spectrum?
Note: A multiplet is considered one signal.
For each of the given mass spectrum data, identify whether the compound contains chlorine, bromine, or neither.
Compound
m/z of M* peak
m/z of M
+ 2 peak
ratio of M+ : M
+ 2 peak
Which element is present?
A
122
no M
+ 2 peak
not applicable
(Choose one)
B
78
80
3:1
(Choose one)
C
227
229
1:1
(Choose one)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.