Interpretation:
The difference between homogeneous catalysis and heterogeneous catalysis has to be distinguished.
Concept introduction:
Catalyst: A substance or a compound which promotes the rate of a
Homogeneous catalyst: In a catalytic reaction the phase of the reactant and catalyst must be in same phase.
Heterogeneous catalysts: In a catalytic reaction the phase of the reactant and catalyst were in different phases.
Homogeneous catalysis: In a chemical catalysis reaction solution by a soluble catalyst is said to be homogeneous catalysis.
Heterogeneous catalysis: In a chemical catalysis reaction, the phases of reactant and catalyst are different.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry: Atoms First
- Explain how a species might be part of a rate law but not part of a balanced chemical reaction.arrow_forward. Account for the increase in reaction rate brought about by a catalyst.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward
- . find the rate law predicted for a particular reaction mechanism.arrow_forwardWhich reaction mechanism assumptions are unimportant in describing simple ionic reactions between cations and anions? Why?arrow_forwardIn Chapter 3, we discussed the conversion of biomass into biofuels. One important area of research associated with biofuels is the identification and development of suitable catalysts to increase the rate at which fuels can be produced. Do a web search to find an article describing biofuel catalysts. Then, write one or two sentences describing the reactions being catalyzed, and identify the catalyst as homogeneous or heterogeneous.arrow_forward
- Can a reaction mechanism ever be proven correct? Can it be proven incorrect?arrow_forwardList at least four experimentally determined parameters that you, an experimenter, can define when exploring the hydrolysis of ethyl benzoate by aqueous sodium hydroxide.arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forward
- Two mechanisms are proposed for the reaction 2NO(g)+O2(g)2NO2(g)Mechanism 1: NO+O2NO3(fast) NO3+NO2NO2(slow) Mechanism 2: NO+ON2O2(fast) N2O2+O22NO2(slow) Show that each of these mechanisms is consistent with the observed rate law: rate=k[ NO2 ]2[ O2 ].arrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forwardCandle wax is a mixture of hydrocarbons. In the reaction of oxygen with candle w ax in Figure 11.2, the rate of consumption of oxygen decreased with time after the flask was covered, and eventually' the flame went out. From the perspective of the kinetic-molecular theory, describe what is happening in the flask. FIGURE 11.2 When a candle burns in a closed container, the flame will diminish and eventually go out. As the amount of oxygen present decreases, the rate of combustion will also decrease. Eventually, the rate of combustion is no longer sufficient to sustain the flame even though there is still some oxygen present in the vessel.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning