Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.63QP
Interpretation Introduction
Interpretation:
Which of the given mechanisms can be ruled out of the basis of the observed rate expression have to be determined.
Concept introduction:
Order of a reaction: The sum of exponents of the concentrations in the rate law for the reaction is said to be order of a reaction.
Rate law: It is an equation that related to the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry: Atoms First
Ch. 19.3 - Prob. 19.1WECh. 19.3 - Write the rate expressions for each of the...Ch. 19.3 - Write the balanced equation corresponding to the...Ch. 19.3 - The diagrams represent a system that initially...Ch. 19.3 - Consider the reaction 4NO2(g)+O2(g)2N2O5(g) At a...Ch. 19.3 - Consider the reaction 4PH3(g)P4(g)+6H2(g) At a...Ch. 19.3 - Prob. 2PPBCh. 19.3 - Prob. 2PPCCh. 19.3 - Prob. 19.3.1SRCh. 19.3 - Prob. 19.3.2SR
Ch. 19.4 - The gas-phase reaction of nitric oxide with...Ch. 19.4 - Prob. 3PPACh. 19.4 - Prob. 3PPBCh. 19.4 - Prob. 3PPCCh. 19.4 - Prob. 19.4.1SRCh. 19.4 - Prob. 19.4.2SRCh. 19.4 - Prob. 19.4.3SRCh. 19.4 - Prob. 19.4.4SRCh. 19.4 - Prob. 19.4.5SRCh. 19.5 - Prob. 19.4WECh. 19.5 - Prob. 4PPACh. 19.5 - Prob. 4PPBCh. 19.5 - Prob. 4PPCCh. 19.5 - Prob. 19.5WECh. 19.5 - Prob. 5PPACh. 19.5 - Prob. 5PPBCh. 19.5 - Prob. 5PPCCh. 19.5 - Prob. 19.6WECh. 19.5 - Prob. 6PPACh. 19.5 - Calculate the rate constant for the first-order...Ch. 19.5 - Prob. 6PPCCh. 19.5 - Prob. 19.7WECh. 19.5 - The reaction 2A B is second order in A with a rate...Ch. 19.5 - Prob. 7PPBCh. 19.5 - Prob. 7PPCCh. 19.5 - Prob. 19.5.1SRCh. 19.5 - Prob. 19.5.2SRCh. 19.5 - Prob. 19.5.3SRCh. 19.5 - Prob. 19.5.4SRCh. 19.6 - Prob. 19.8WECh. 19.6 - Prob. 8PPACh. 19.6 - Prob. 8PPBCh. 19.6 - Prob. 8PPCCh. 19.6 - Prob. 19.9WECh. 19.6 - Prob. 9PPACh. 19.6 - Prob. 9PPBCh. 19.6 - Prob. 9PPCCh. 19.6 - Prob. 19.10WECh. 19.6 - Prob. 10PPACh. 19.6 - Prob. 10PPBCh. 19.6 - Prob. 10PPCCh. 19.6 - Prob. 19.6.1SRCh. 19.6 - Prob. 19.6.2SRCh. 19.7 - Prob. 19.11WECh. 19.7 - Prob. 11PPACh. 19.7 - Prob. 11PPBCh. 19.7 - Prob. 11PPCCh. 19.7 - Consider the gas-phase reaction of nitric oxide...Ch. 19.7 - Prob. 12PPACh. 19.7 - Prob. 12PPBCh. 19.7 - Prob. 12PPCCh. 19.7 - Prob. 19.7.1SRCh. 19.7 - Prob. 19.7.2SRCh. 19.7 - Prob. 19.7.3SRCh. 19.7 - Prob. 19.7.4SRCh. 19 - The rate of a reaction in which the reactant...Ch. 19 - The rate of a reaction in which the reactant...Ch. 19 - The rate of a reaction in which the reactant...Ch. 19 - Increasing the temperature of a reaction increases...Ch. 19 - Define activation energy. What role does...Ch. 19 - Sketch a potential energy versus reaction progress...Ch. 19 - The reaction H + H2 H2 + H has been studied for...Ch. 19 - What is meant by the rate of a chemical reaction?...Ch. 19 - Distinguish between average rate and instantaneous...Ch. 19 - What are the advantages of measuring the initial...Ch. 19 - Prob. 19.7QPCh. 19 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 19 - Prob. 19.9QPCh. 19 - Prob. 19.10QPCh. 19 - Prob. 19.11QPCh. 19 - Prob. 19.12QPCh. 19 - Prob. 19.13QPCh. 19 - What are the units for the rate constants of...Ch. 19 - Consider the zeroth-order reaction: A product....Ch. 19 - Prob. 19.16QPCh. 19 - Prob. 19.17QPCh. 19 - Prob. 19.18QPCh. 19 - Prob. 19.19QPCh. 19 - Prob. 19.20QPCh. 19 - Prob. 19.21QPCh. 19 - Prob. 19.22QPCh. 19 - Prob. 19.23QPCh. 19 - Prob. 19.24QPCh. 19 - Prob. 19.25QPCh. 19 - Prob. 19.26QPCh. 19 - Prob. 19.27QPCh. 19 - Prob. 19.28QPCh. 19 - Prob. 19.29QPCh. 19 - Prob. 19.30QPCh. 19 - Prob. 19.31QPCh. 19 - Prob. 19.32QPCh. 19 - Prob. 19.33QPCh. 19 - Consider the first-order reaction X Y shown here,...Ch. 19 - Prob. 19.35QPCh. 19 - Consider the first-order reaction A B in which A...Ch. 19 - Prob. 19.37QPCh. 19 - Prob. 19.38QPCh. 19 - Prob. 19.39QPCh. 19 - Prob. 19.40QPCh. 19 - Prob. 19.41QPCh. 19 - Prob. 19.42QPCh. 19 - Prob. 19.43QPCh. 19 - Prob. 19.44QPCh. 19 - Prob. 19.45QPCh. 19 - The rate at which tree crickets chirp is 2.0 102...Ch. 19 - Prob. 19.47QPCh. 19 - The activation energy for the denaturation of a...Ch. 19 - Variation of the rate constant with temperature...Ch. 19 - Prob. 19.50QPCh. 19 - Prob. 19.51QPCh. 19 - Prob. 19.52QPCh. 19 - Prob. 19.53QPCh. 19 - What is an elementary step? What is the...Ch. 19 - Prob. 19.55QPCh. 19 - Determine the molecularity, and write the rate law...Ch. 19 - What is the rate-determining step of a reaction?...Ch. 19 - Prob. 19.58QPCh. 19 - Prob. 19.59QPCh. 19 - Classify each of the following elementary steps as...Ch. 19 - Prob. 19.61QPCh. 19 - Prob. 19.62QPCh. 19 - Prob. 19.63QPCh. 19 - Prob. 19.64QPCh. 19 - Prob. 19.65QPCh. 19 - What are the characteristics of a catalyst?Ch. 19 - Prob. 19.67QPCh. 19 - Prob. 19.68QPCh. 19 - The concentrations of enzymes in cells are usually...Ch. 19 - Prob. 19.70QPCh. 19 - Prob. 19.71QPCh. 19 - Prob. 19.72QPCh. 19 - Prob. 19.73QPCh. 19 - Prob. 19.74QPCh. 19 - Prob. 19.75QPCh. 19 - In a certain industrial process involving a...Ch. 19 - Prob. 19.77QPCh. 19 - Prob. 19.78QPCh. 19 - Explain why most metals used in catalysis arc...Ch. 19 - Prob. 19.80QPCh. 19 - Prob. 19.81QPCh. 19 - Prob. 19.82QPCh. 19 - Prob. 19.83QPCh. 19 - Prob. 19.84QPCh. 19 - The bromination of acetone is acid-catalyzed. The...Ch. 19 - The decomposition of N2O to N2 and O2 is a...Ch. 19 - Prob. 19.87QPCh. 19 - Prob. 19.88QPCh. 19 - The integrated rate law for the zeroth-order...Ch. 19 - Prob. 19.90QPCh. 19 - Prob. 19.91QPCh. 19 - Prob. 19.92QPCh. 19 - The reaction of G2 with E2 to form 2EG is...Ch. 19 - Prob. 19.94QPCh. 19 - Prob. 19.95QPCh. 19 - Prob. 19.96QPCh. 19 - Strictly speaking, the rate law derived for the...Ch. 19 - Prob. 19.98QPCh. 19 - The decomposition of dinitrogen pentoxide has been...Ch. 19 - Prob. 19.100QPCh. 19 - Prob. 19.101QPCh. 19 - Prob. 19.102QPCh. 19 - To prevent brain damage, a standard procedure is...Ch. 19 - Prob. 19.104QPCh. 19 - Prob. 19.105QPCh. 19 - Prob. 19.106QPCh. 19 - Prob. 19.107QPCh. 19 - Prob. 19.108QPCh. 19 - Prob. 19.109QPCh. 19 - Prob. 19.110QPCh. 19 - (a) What can you deduce about the activation...Ch. 19 - Prob. 19.112QPCh. 19 - Prob. 19.113QPCh. 19 - Prob. 19.114QPCh. 19 - Prob. 19.115QPCh. 19 - Prob. 19.116QPCh. 19 - Prob. 19.117QPCh. 19 - Prob. 19.118QPCh. 19 - Prob. 19.119QPCh. 19 - Prob. 19.120QPCh. 19 - Prob. 19.121QPCh. 19 - Prob. 19.122QPCh. 19 - Consider the following potential energy profile...Ch. 19 - Prob. 19.124QPCh. 19 - Prob. 19.125QPCh. 19 - Prob. 19.126QPCh. 19 - Prob. 19.127QPCh. 19 - Prob. 19.128QPCh. 19 - The following expression shows the dependence of...Ch. 19 - Prob. 19.130QPCh. 19 - The rale constant for the gaseous reaction H2(g) +...Ch. 19 - Prob. 19.132QPCh. 19 - Prob. 19.133QPCh. 19 - At a certain elevated temperature, ammonia...Ch. 19 - Prob. 19.135QPCh. 19 - The rate of a reaction was followed by the...Ch. 19 - Prob. 19.137QPCh. 19 - Prob. 19.138QPCh. 19 - Prob. 19.1KSPCh. 19 - Prob. 19.2KSPCh. 19 - Prob. 19.3KSPCh. 19 - Prob. 19.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardOne possible mechanism for the decomposition of nitryl chloride, NO2CI, is What is the overall reaction? What rate law would be derived from this mechanism? What effect does increasing the concentration of the product NO2 have on the reaction rate?arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forward
- At 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardNitryl fluoride is an explosive compound that can be made by oxidizing nitrogen dioxide with fluorine: 2 NO2(g) + F2(g) → 2 NO2F(g) Several kinetics experiments, all done at the same temperature and involving formation of nitryl fluoride, are summarized in this table: Write the rate law for the reaction. Determine what the order of the reaction is with respect to each reactant and each product. Calculate the rate constant k and express it in appropriate units.arrow_forwardIsomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forward
- In experiments on the decomposition of azomethane. CH3NHCH3(g)C2H6(g)+N2(g) the following data were obtained: Initial Concentration of Azomethane Initial Rate Exp. 1 1.13 102 M 2.8 106 M/s Exp. 2 2.26 102 M 5.6 106 M/s What is the rate law? What is the value of the rate constant?arrow_forwardMany biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forwardThe decomposition of ozone is a second-order reaction with a rate constant of 30.6 atm1 s1 at 95 C. 2O3(g)3O2(g) If ozone is originally present at a partial pressure of 21 torr, calculate the length of time needed for the ozone pressure to decrease to 1.0 torr.arrow_forward
- The decomposition of SO2Cl2 is a first-order reaction: SO2Cl2(g) SO2(g) + Cl2(g) The rate constant for the reaction is 2.8 103 min1 at 600 K. If the initial concentration of SO2Cl2 is 1.24 103 mol/L, how long will it take for the concentration to drop to 0.31 103 mol/L?arrow_forwardThe decomposition of azomethane, (CH3)2N2, to nitrogen and ethane gases is a first-order reaction, (CH3)2N2(g)N2(g)+C2H6(g). At a certain temperature, a 29-mg sample of azomethane is reduced to 12 mg in 1.4 s. (a) What is the rate constant k for the decomposition at that temperature? (b) What is the half-life of the decomposition? (c) How long will it take to decompose 78% of the azomethane?arrow_forwardThe reaction NO(g) + 1/2 Cl2(g) NOCl(g) is first-order in [Cl2] and second-order with respect to [NO]. Under a given set of conditions, the initial rate of this reaction is 620 106 mol/L s. What is the rate of this reaction if the concentration of NO is doubled and the concentration of Cl2 is reduced to half the original value? (a) 6.20 106 mol/L s (b) 124 105 mol/L s (c) 2.48 105 mol/L s (d) 4.96 105 mol/L sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY