
(a)
Interpretation:
The rate formation of
Concept introduction:
Rate law: It is an equation that related to the
Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.
- The change in concentration term is divided by the respective
stoichiometric coefficient . - The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
- Rate of reaction is always represented by positive quantities.
(a)

Answer to Problem 19.127QP
The rate formation of
Explanation of Solution
The given reaction is
The order of the reaction is second order
The rate law for the given reaction is
Now, we have the values of rate constant and concentration of
(b)
Interpretation:
The rate consumption of
Concept introduction:
Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants). It is also said to be as rate equation.
Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.
- The change in concentration term is divided by the respective stoichiometric coefficient.
- The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
- Rate of reaction is always represented by positive quantities.
(b)

Answer to Problem 19.127QP
The rate consumption of
Explanation of Solution
Above obtained rate for
(c)
Interpretation:
The rate formation of
Concept introduction:
Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants). It is also said to be as rate equation.
Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.
- The change in concentration term is divided by the respective stoichiometric coefficient.
- The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
- Rate of reaction is always represented by positive quantities.
(c)

Answer to Problem 19.127QP
The rate formation of
Explanation of Solution
By increasing the rate of formation of
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry: Atoms First
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





