(a)
Interpretation:
The given elementary reactions as unimolecualar, bimolecular, or termolecualar have to be classified.
Concept introduction:
Unimolecular: A molecule undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules undergo collision to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
(b)
Interpretation:
The given elementary reactions as unimolecualar, bimolecular, or termolecualar have to be classified.
Concept introduction:
Unimolecular: A molecule undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules undergo collision to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
(c)
Interpretation:
The given elementary reactions as unimolecualar, bimolecular, or termolecualar have to be classified.
Concept introduction:
Unimolecular: A molecule undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules undergo collision to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry: Atoms First
- Give at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forward
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward. Account for the increase in reaction rate brought about by a catalyst.arrow_forwardAs with any drug, aspirin (acetylsalicylic acid) must remain in the bloodstream long enough to be effective. Assume that the removal of aspirin from the bloodstream into the urine is a lirst-order reaction, with a half-life of about 3 hours. The instructions on an aspirin bottle say to take 1 or 2 tablets every 4 hours. If a person takes 2 aspirin tablets, how much aspirin remains in the bloodstream when it is time for the second dose? (A standard tablet contains 325 mg of aspirin.)arrow_forward
- . explain the difference between elementary reactions and multistep reactions.arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forward
- The label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forwardWhat is the rate law for each of the following elementary reactions? (a) NO(g) + NO3(g) 2 NO2(g) (b) Cl(g) + H2(g) HCl(g) + H(g) (c) (CH3)3CBr(aq) (CH3)3C+(aq) + Br(aq)arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax