(a) Interpretation: Balanced equation for each cell reaction should be written. Concept introduction: A galvanic cell can be represented using a shorthand notation. For example, a redox reaction and its cell notation is given below. Zn(s) + Cu 2 + (aq) → Zn 2 + (aq) + Cu(s) Zn(s) | Zn 2 + (aq) || Cu 2 + (aq) | Cu(s) The single vertical line (|) indicates the phase boundary. The double vertical line (||) indicates the salt bridge. The shorthand notation for anode half-cell is written on left side of the double vertical line and notation for cathode half-cell is written on the right side of the double vertical line. The electrodes are indicated in the two extreme ends of the cell notation. Always reactants in each half-cell is written first and followed by products. The electrons move through the external circuit from left to right (from anode to cathode).
(a) Interpretation: Balanced equation for each cell reaction should be written. Concept introduction: A galvanic cell can be represented using a shorthand notation. For example, a redox reaction and its cell notation is given below. Zn(s) + Cu 2 + (aq) → Zn 2 + (aq) + Cu(s) Zn(s) | Zn 2 + (aq) || Cu 2 + (aq) | Cu(s) The single vertical line (|) indicates the phase boundary. The double vertical line (||) indicates the salt bridge. The shorthand notation for anode half-cell is written on left side of the double vertical line and notation for cathode half-cell is written on the right side of the double vertical line. The electrodes are indicated in the two extreme ends of the cell notation. Always reactants in each half-cell is written first and followed by products. The electrons move through the external circuit from left to right (from anode to cathode).
Solution Summary: The author illustrates how a galvanic cell can be represented using shorthand notation.
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 19, Problem 19.37CP
Interpretation Introduction
(a)
Interpretation:
Balanced equation for each cell reaction should be written.
Concept introduction:
A galvanic cell can be represented using a shorthand notation. For example, a redox reaction and its cell notation is given below.
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s)
The single vertical line (|) indicates the phase boundary. The double vertical line (||) indicates the salt bridge. The shorthand notation for anode half-cell is written on left side of the double vertical line and notation for cathode half-cell is written on the right side of the double vertical line. The electrodes are indicated in the two extreme ends of the cell notation. Always reactants in each half-cell is written first and followed by products. The electrons move through the external circuit from left to right (from anode to cathode).
Interpretation Introduction
(b)
Interpretation:
Each cell should be sketched and anode and cathode should be labeled. The direction of electron and ion flow should be indicated.
Concept introduction:
Anode is the electrode where oxidation takes place and electrons are produced. Anode has a negative sign in galvanic cell. Cathode is the electrode where reduction takes place and electrons are consumed. Cathode has a positive sign.
Anions move form cathode compartment towards anode compartment while cations migrate from the anode compartment towards the cathode compartment.
Interpretation Introduction
(c)
Interpretation:
Which cell has the largest and which has the smallest cell potential should be deduced.
Concept introduction:
The Nernst equation allows to calculate cell potential at non-standard conditions.
E=E0−0.0592 VnlogQ
E − non-standard cell potential
E0 − standard cell potential
n − number of electrons passed through the cell
Q − reaction quotient
The standard cell potential of overall reaction is given by the sum of the standard half-cell potentials for oxidation and reduction.
my ccc edu - Search
X
Quick Access
X
D2L Homepage - Spring 2025 x N Netflix
X
Dimensional Analysis - A x+
pp.aktiv.com
Q ☆
X
Question 59 of 70
The volume of
1
unit of plasma is 200.0 mL
If the recommended dosage
for adult patients is 10.0 mL per kg of body mass, how many units are needed for
a patient with a body mass of 80.0
kg ?
80.0
kg
10.0
DAL
1
units
X
X
4.00
units
1
1
Jeg
200.0
DAL
L
1 units
X
200.0 mL
= 4.00 units
ADD FACTOR
*( )
DELETE
ANSWER
RESET
D
200.0
2.00
1.60 × 10³
80.0
4.00
0.0400
0.250
10.0
8.00
&
mL
mL/kg
kg
units/mL
L
unit
Q Search
delete
prt sc
111
110
19
Identify the starting material in the following reaction. Click the "draw structure" button to launch the
drawing utility.
draw structure ...
[1] 0 3
C10H18
[2] CH3SCH3
H
In an equilibrium mixture of the formation of ammonia from nitrogen and hydrogen, it is found that
PNH3 = 0.147 atm, PN2 = 1.41 atm and Pн2 = 6.00 atm. Evaluate Kp and Kc at 500 °C.
2 NH3 (g) N2 (g) + 3 H₂ (g)
K₂ = (PN2)(PH2)³ = (1.41) (6.00)³ = 1.41 x 104
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell