
(a)
Interpretation:
Structural formula for the saponification acidification and decarboxylation product of
Concept Introduction:
Saponification:
It is a process in which triglycerides reacts with sodium or potassium hydroxide to form fatty acids and glycerol. This reaction is also known as alkaline hydrolysis of ester.
Decarboxylation:
It is a reaction which involves the release of carbondioxide by removing the carboxyl group. This also involves the removal of carbon atom from the chain.
(b)
Interpretation:
Structural formula for the saponification acidification and decarboxylation product of
Concept Introduction:
Saponification:
It is a process in which triglycerides reacts with sodium or potassium hydroxide to form fatty acids and glycerol. This reaction is also known as alkaline hydrolysis of ester. Saponification is mainly used for manufacturing soap.
Decarboxylation:
It is a reaction which involves the release of carbondioxide by removing the carboxyl group. This also involes the removal of carbon atom from the carbonchain. Enzymes which catalyze decarboxylation are known as decarboxylase. Alkanoic acid decarboxylation is very slow.
(c)
Interpretation:
Structural formula for the saponification acidification and decarboxylation product of ethyl 2-methyl-3-oxopropanoate has to be drawn.
Concept Introduction:
Saponification:
It is a process in which triglycerides reacts with sodium or potassium hydroxide to form fatty acids and glycerol. In simple saponification is a reaction between an acid and a base to form salt. The base commonly used is sodium hydroxide. Potassium hydroxide is also used. This reaction is also known as alkaline hydrolysis of ester.
Decarboxylation:
It is a reaction which erases a carbon atom from the carbon chain by releasing carbondioxide. It is a unimolecular dissociative process that gives a carbanion and carbondioxide.

Trending nowThis is a popular solution!

Chapter 19 Solutions
Organic Chemistry
- Can you please explain this problem to me and expand it so I can understand the full Lewis dot structure? Thanks!arrow_forwardCan you please explain this problem to me and expand it so I can understand the full Lewis dot structure? Thanks!arrow_forwardPlease answer the questions in the photos and please revise any wrong answers. Thank youarrow_forward
- (Please be sure that 7 carbons are available in the structure )Based on the 1H NMR, 13C NMR, DEPT 135 NMR and DEPT 90 NMR, provide a reasoning step and arrive at the final structure of an unknown organic compound containing 7 carbons. Dept 135 shows peak to be positive at 128.62 and 13.63 Dept 135 shows peak to be negative at 130.28, 64.32, 30.62 and 19.10.arrow_forward-lease help me answer the questions in the photo.arrow_forwardDefine electronegativity.arrow_forward
- Why do only the immediately adjacent H's show up in the number of peaks? Are there normally peaks for the H's that are 2-3 carbons away?arrow_forwardPlease help me understand this question. Thank you. Organic Chem 1arrow_forwardFor the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




