(a)
Interpretation:
The high-resolution proton NMR spectrum of toluene is to be stated.
Concept introduction:
The nuclear magnetic resonance (NMR) instrument analyzes the material’s molecular structure by placing the material in the strong magnetic field and measuring the spins.
The NMR spectroscopy measures the following property of the material molecules.
- Chemical shift:
Appearance of the atomic group composition in the molecule.
- The spin-spin coupling constant:
It provides information about the appearance of the adjacent atoms.
- Relaxation time:
It provides information about molecular dynamics.
- Signal intensity:
It provides the quantitative information about the atomic ratios within a molecule which determines the molecular structure, and proportions of different compounds in a mixture.
(b)
Interpretation:
The high-resolution proton NMR spectrum of ethylbenzene is to be stated.
Concept introduction:
The nuclear magnetic resonance (NMR) instrument analyzes the material’s molecular structure by placing the material in the strong magnetic field and measuring the spins.
The NMR spectroscopy measures the following property of the material molecules.
- Chemical shift:
Appearance of the atomic group composition in the molecule.
- The spin-spin coupling constant:
It provides information about the appearance of the adjacent atoms.
- Relaxation time:
It provides information about molecular dynamics.
- Signal intensity:
It provides the quantitative information about the atomic ratios within a molecule which determines the molecular structure, and proportions of different compounds in a mixture.
(c)
Interpretation:
The high-resolution proton NMR spectrum of i- butane.
Concept introduction:
The nuclear magnetic resonance (NMR) instrument analyzes the material’s molecular structure by placing the material in the strong magnetic field and measuring the spins.
The NMR spectroscopy measures the following property of the material molecules.
- Chemical shift:
Appearance of the atomic group composition in the molecule.
- The spin-spin coupling constant:
It provides information about the appearance of the adjacent atoms.
- Relaxation time:
It provides information about molecular dynamics.
- Signal intensity:
It provides the quantitative information about the atomic ratios within a molecule which determines the molecular structure, and proportions of different compounds in a mixture.
Trending nowThis is a popular solution!
Chapter 19 Solutions
Principles of Instrumental Analysis
- What is the pH of the Tris buffer after the addition of 10 mL of 0.01M NaOH? How would I calculate this?arrow_forwardWhy do isopolianions form polymeric species with a defined molecular weight? What does it depend on?arrow_forwardWhat are isopolianions? Describe the structural unit of isopolianions.arrow_forward
- Justify the polymerization of vanadates VO43-, as a function of concentration and pH.arrow_forwardWhat is the preparation of 500 mL of 100mM MOPS buffer (pH=7.5) starting with 1 M MOPS and 1 M NaOH? How would I calculate the math?arrow_forwardIndicate the correct option.a) Isopolianions are formed around metallic atoms in a low oxidation state.b) Non-metals such as N, S, C, Cl, ... give rise to polyacids (oxygenated).c) Both are incorrect.arrow_forward
- 14. Which one of the compounds below is the major organic product obtained from the following series of reactions? Br OH OH CH3O™ Na+ H*, H₂O SN2 HO OH A B C D 0 Earrow_forwardWavelength (nm) I'm not sure what equation I can come up with other than the one generated with my graph. Can you please show me the calculations that were used to find this equation? Give an equation that relates energy to wavelength. Explain how you arrived at your equation. Wavelength Energy (kJ/mol) (nm) 350 341.8 420 284.8 470 254.5 530 225.7 580 206.3 620 192.9 700 170.9 750 159.5 Energy vs. Wavelength (Graph 1) 400 350 y=-0.4367x+470.82 300 250 200 150 100 50 O 0 100 200 300 400 500 600 700 800 Energy (kJ/mol)arrow_forward5. Draw molecular orbital diagrams for superoxide (O2¯), and peroxide (O2²-). A good starting point would be MO diagram for O2 given in your textbook. Then: a) calculate bond orders in superoxide and in peroxide; indicate which species would have a stronger oxygen-oxygen bond; b) indicate which species would be a radical. (4 points)arrow_forward
- 16. Which one of the compunds below is the final product of the reaction sequence shown here? عملاء .OH Br. (CH3)2CH-C=C H+,H,O 2 mol H2, Pt A OH B OH D OH E OH C OHarrow_forwardIndicate whether any of the two options is correct.a) The most common coordination structure for isopolianions is the prismb) Heteropolianions incorporate alkaline cations into their structuresarrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning