(a)
Interpretation:
The appearance of the high resolution 13C spectrum of methyl formate when the protons are not decoupled should be predicted.
Concept introduction:
13C isotope of carbon has low
(b)
Interpretation:
The appearance of the high resolution 13C spectrum of acetaldehyde when the protons are not decoupled should be predicted.
Concept introduction:
13C isotope of carbon has low natural abundance. 12C is the most abundant isotope in nature. But it is NMR inactive because the spin quantum number is zero. Since 13C is less likely to find in nature there is a very low probability of finding two 13C nuclei which are close to each other. So there is no observable spin-spin coupling between adjacent carbons in 13C NMR spectra. But there are 13C and 1H coupling which leads to large number of splitting patterns in the spectrum. To obtain simplified 13C spectrum scientists use a method called broadband decoupling. This technique avoids the C-H coupling signal, so that all carbon signals appear as singlets.
(c)
Interpretation:
The appearance of the high resolution 13C spectrum of acetone when the protons are not decoupled should be predicted.
Concept introduction:
13C isotope of carbon has low natural abundance. 12C is the most abundant isotope in nature. But it is NMR inactive because the spin quantum number is zero. Since 13C is less likely to find in nature there is a very low probability of finding two 13C nuclei which are close to each other. So there is no observable spin-spin coupling between adjacent carbons in 13C NMR spectra. But there are 13C and 1H coupling which leads to large number of splitting patterns in the spectrum. To obtain simplified 13C spectrum scientists use a method called broadband decoupling. This technique avoids the C-H coupling signal, so that all carbon signals appear as singlets.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Principles of Instrumental Analysis
- The decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forwardDon't used hand raitingarrow_forwardCS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forward
- CS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forwardThe following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forwardControl Chart Drawing Assignment The table below provides the number of alignment errors observed during the final inspection of a certain model of airplane. Calculate the central, upper, and lower control limits for the c-chart and draw the chart precisely on the graph sheet provided (based on 3-sigma limits). Your chart should include a line for each of the control limits (UCL, CL, and LCL) and the points for each observation. Number the x-axis 1 through 25 and evenly space the numbering for the y-axis. Connect the points by drawing a line as well. Label each line drawn. Airplane Number Number of alignment errors 201 7 202 6 203 6 204 7 205 4 206 7 207 8 208 12 209 9 210 9 211 8 212 5 213 5 214 9 215 8 216 15 217 6 218 4 219 13 220 7 221 8 222 15 223 6 224 6 225 10arrow_forward
- Collagen is used to date artifacts. It has a rate constant = 1.20 x 10-4 /years. What is the half life of collagen?arrow_forwardיווי 10 20 30 40 50 60 70 3.5 3 2.5 2 1.5 1 [ppm] 3.5 3 2.5 2 1.5 1 6 [ppm] 1 1.5 -2.5 3.5arrow_forward2H2S(g)+3O2(g)→2SO2(g)+2H2O(g) A 1.2mol sample of H2S(g) is combined with excess O2(g), and the reaction goes to completion. Question Which of the following predicts the theoretical yield of SO2(g) from the reaction? Responses 1.2 g Answer A: 1.2 grams A 41 g Answer B: 41 grams B 77 g Answer C: 77 grams C 154 g Answer D: 154 grams Darrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning