Starting Out with C++ from Control Structures to Objects (9th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
9th Edition
ISBN: 9780134498379
Author: Tony Gaddis
Publisher: PEARSON
Question
Book Icon
Chapter 19, Problem 13PC
Program Plan Intro

Inventory Bin Queue

Program Plan:

InventoryItem.h:

  • Include required header files
  • Declare a class named “InventoryItem”. Inside the class,
    • Inside “private” access specifier,
      • Declare variables “serialNum”, “manufactDate”, and “lotNum”.
    • Inside “public” access specifier,
      • Give definition for default constructor.
      • Give definition for overloaded constructor.
      • Give mutator function “set_SerialNum ()” to set serial number.
      • Give mutator function “set_ManufactDate ()” to set date.
      • Give mutator function “set_LotNum ()” to set lot number.
      • Give accessor function “get_SerialNum ()” that returns serial number.
      • Give accessor function “get_ManufactDate ()” that returns date.
      • Give accessor function “get_LotNum ()” that returns lot number.

Dynqueue.h:

  • Include required header files.
  • Create template class
  • Declare a class named “Dynqueue”. Inside the class,
    • Inside the “private” access specifier,
      • Create a structure named “QueueNode”.
        • Create an object for the template
        • Create a pointer named “next”.
      • Create two pointers named “front” and “rear”.
    • Inside “public” access specifier,
      • Declare constructor and destructor.
      • Declare the functions “enqueue ()”, “dequeue ()”, “isEmpty ()”, “isFull ()”, and “clear ()”.
  • Declare template class.
  • Give definition for the constructor.
    • Assign the values.
  • Declare template class.
  • Give definition for the destructor.
    • Call the function “clear ()”.
  • Declare template class.
  • Give function definition for “enqueue ()”.
    • Make the pointer “newNode” as null.
    • Assign “num” to newNode->value.
    • Make newNode->next as null.
    • Check whether the queue is empty using “isEmpty ()” function.
      • If the condition is true then, assign newNode to “front” and “rear”.
      • If the condition is not true then,
        • Assign newNode to rear->next
        • Assign newNode to “rear”.
      • Increment the variable “numItems”.
  • Declare template class.
  • Give function definition for “dequeue ()”.
    • Assign temp pointer as null.
    • Check if the queue is empty using “isEmpty()” function.
      • If the condition is true then print “The queue is empty”.
      • If the condition is not true then,
        • Assign the value of front to the variable “num”.
        • Make front->next as “temp”.
        • Delete the front value
        • Make temp as front.
        • Decrement the variable “numItems”.
  • Declare template class.
  • Give function definition for “isEmpty ()”.
    • Assign “true” to a Boolean variable
    • Check if “numItems” is true.
      • If the condition is true then assign “false” to the variable.
    • Return the Boolean variable.
  • Declare template class.
  • Give function definition for “clear ()”.
    • Create an object for template.
      • Dequeue values from queue till the queue becomes empty using “while” condition.

Main.cpp:

  • Include required header files
  • Inside “main ()” function,
    • Create a template for queue.
    • Create an object for the class
    • Declare variables “choice”, “serial”, and “mDate”.
    • Print the menu to the user till the user enters corresponding menu number using “while” condition.
    • Switch to case.
      • Case1:
        • Get the serial number and manufacturing date from the user.
        • Push the object into the queue using the function “enqueue ()”.
      • Case 2:
        • Check if the queue is empty using “isEmpty ()” function.
        • If the queue is not empty,
          • Dequeue an element which is inserted first.
          • Print the serial number and date that has been removed.
      • Case 3:
        • Exit

Blurred answer
Students have asked these similar questions
Consider the following database for some store: Customers (cid, cname, city, discount)Agents (aid, aname, city, percent)Products (pid, pname, city, quantity, price)Orders (ordno, mon, cid, aid, pid, qty, dollars) The relation Customers records the ID (cid), name (cname), location (city) of each customer and a discount percentage (discount) for this customer. The relation Agents records the ID (aid), name (aname), location (city) of each agent and a transaction fee (percent) charged by this agent. The relation Products lists the ID (pid), name (pname), location (city), quantity and price of available products. And finally, the relation Orders contains a unique order number (ordno), the month (mon), customer (cid), agent (aid), product (pid), quantity (qty) of each order as well as the total value (dollars) of the transaction.   1. Express the following query in SQL (a) List customers (names) who do not have discounts but purchased at least one product of price greater than $50. (b) Find…
Consider the following relational schema and briefly answer the questions that follow:   Emp(eid: integer, ename: string, age: integer, salary: real)  Works(eid: integer, did: integer, pct_time: integer)  Dept(did: integer, budget: real, managerid: integer)      a. Define a table constraint on Dept that will ensure that all managers have age > 30. b. Write SQL statements to delete all information about employees whose salaries exceed that of the manager of one or more departments that they work in. Be sure to ensure that all the relevant integrity constraints are satisfied after your updates.
Consider the following relations:     Student(snum: integer, sname: string, rmajor: string,          level: string, age: integer)   Class(cname: string, meets_at: time, room: string, fid: integer)   Enrolled(snum: integer, cname: string)   Faculty(fid: integer, fname: string, deptid: integer)     The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class.     2. Express each of the following integrity constraints in SQL unless it is implied by the primary and foreign key constraint; if so, explain how it is implied. If the constraint cannot be expressed in SQL, say so. For each constraint, state what operations (inserts, deletes, and updates on specific relations) must be monitored to enforce the constraint.   (a) Every faculty member must teach at least two courses. (b) Every student must be enrolled in the course called 'Math101'. (c) A student cannot add more than two courses at a time…

Chapter 19 Solutions

Starting Out with C++ from Control Structures to Objects (9th Edition)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
CMPTR
Computer Science
ISBN:9781337681872
Author:PINARD
Publisher:Cengage