Concept explainers
The largest value of
Answer to Problem 18.141P
The largest value of
Explanation of Solution
Given information:
The position of the sphere
The rate of precession
Calculation:
Conservation of angular momentum about the Z and z axes:
The only external forces are acting in homogenous sphere is weight of the sphere and reaction at A. Hence, the angular momentum is conserved about the Z and z axes.
Choose the principal axes
Write the expression for the angular velocity
The principal moment of inertia are
Draw the Free body diagram of homogeneous sphere and the forces acting on it as in Figure (1).
Write the expression for the angular momentum about point A.
Substitute
Consider
The scalar value of
Determine the conservation of angular momentum about fixed Z axis
Substitute
Substitute
Substitute
Determine the constant value using the angular momentum along z–axis.
Substitute
Substitute
Substitute 0 for constant in Equation (3).
Substitute 0 for
Conservation of energy:
Determine the value of kinetic energy T.
Substitute
Select the datum at
Determine the value of conservation of energy using the relation.
Here, E is the constant and V is the potential energy.
Substitute
Substitute
Substitute
Consider
Substitute
Substitute
Solve the Equation (7).
The value of
Determine the largest value of
Therefore, the largest value of
Want to see more full solutions like this?
Chapter 18 Solutions
<LCPO> VECTOR MECH,STAT+DYNAMICS
- M Axis 28 Fig. 2 Question 2: Two identical spheres, each of mass M=100g and negligible radius, are fastened to opposite ends of a magnetic rod of negligible mass and length 10m. This system is initially at rest with the rod horizontal, as shown in fig.2, and is free to rotate about a frictionless, horizontal axis through the center of the rod and perpendicular to the plane of the page. A bird, of mass 3M, lands gently on the sphere on the left. Determine the torque about (a) the axis immediately after the bird lands on the sphere. (b) the bird lands. Determine the angular acceleration of the rod-spheres-birds system immediately after (c) iron ball with mass 200g is thrown towards the road from top and when it reaches the rod with velocity 50m/s, sticks to it at midpoint between axis and the sphere on the left. Find the angular speed of the system. Consider the system is initially at rest with the rod horizontal, as shown in fig.2. A smallarrow_forwardAn automobile wheel test rig consists of a uniform disk A, of mass mд = 5000 kg and radius rà = 1.5 m, that can rotate freely about its fixed center C and over which the wheel of an automobile is made to roll. A wheel B, whose center and center of mass coincide at D, is mounted on a shaft (not shown) that holds D fixed while it allows the wheel to rotate about D. The wheel has diameter d = 0.62 m, mass mß = 21.5 kg, and mass moment of inertia about its mass center /D = 44 kg.m². Both A and B are initially at rest when B is subject to a constant torque M that causes B to roll without slip on A. M BC B TA If M = 1200 N.m, use the angular impulse-momentum principle to determine how long it takes to reach conditions simulating a car speed of 100 km/h. The automobile wheel test rig takes 17.95 s to reach conditions simulating a car speed of 100 km/h.arrow_forwardA long ladder of length l, mass m, and centroidal mass moment of inertia I is placed against a house at an angle 0=0O. Knowing that the ladder is released from rest, determine the angular velocity of the ladder when 0=02. Assume the ladder can slide freely on the horizontal ground and on the vertical wall.arrow_forward
- Can you explain the radius of gyration ? why is it 480mm for the rod & 120mm for the disk. How do we figure this out ? thank youarrow_forwardA 5.32-kg disk A of radius 0.445 m initially rotating counter-clockwise at 436 rev/min is engaged with a 6.72-kg disk B of radius 0.275 m initially rotating clockwise at 528 rev/min, where the moment of inertia of a disk is given as I = ½ mi?. Determine their combined angular speed (in rpm) and direction of rotation after the meshing of the two disks. Remember to show clearly the equations that you use!!'arrow_forwardA radius drum is connected to a disk of radius ra. The combined mass of the disc and the drum is m and the combined radius of rotation (radius of inertia) is k and is suspended by two cables.Knowing that the force in the wires is Ta and, determine the accelerations of points A and B on the wire? (m6 kg ra=0,160 rb = 0,210 k = 0,125 ta= 75 tb= 50)arrow_forward
- An automobile wheel test rig consists of a uniform disk A, of mass mà = 5000 kg and radius rà = 1.5 m, that can rotate freely about its fixed center C and over which the wheel of an automobile is made to roll. A wheel B, whose center and center of mass coincide at D, is mounted on a shaft (not shown) that holds D fixed while it allows the wheel to rotate about D. The wheel has diameter d = 0.62 m, mass mß = 21.5 kg, and mass moment of inertia about its mass center /D = 44 kg-m². Both A and B are initially at rest when B is subject to a constant torque M that causes B to roll without slip on A. M B d A If M = 1200 N·m, use the angular impulse-momentum principle to determine how long it takes to reach conditions simulating a car speed of 100 km/h. The automobile wheel test rig takes s to reach conditions simulating a car speed of 100 km/h.arrow_forwardIn order to determine the mass moment of inertia of a flywheel of radius 600 mm, a 12-kg block is attached to a wire that is wrapped around the flywheel. The block is released and is observed to fall 3 m in 4.6 s. To eliminate bearing friction from the computation, a second block of mass 24 kg is used and is observed to fall 3 m in 3.1 s. Assuming that the moment of the couple due to friction remains constant, determine the mass moment of inertia of the flywheel.arrow_forwardA shaft with 3 meters span between two bearings carries two masses of 120 g and 100 g acting at the extremities of the arms 40 mm and 50 mm long respectively. The planes in which these masses rotate are 1.5 m and 2.5 m respectively from the left end bearing supporting the shaft. The angle between the arms is 120°. The speed of rotation of the shaft is 200 r.p.m. If the masses are balanced by two counter-masses rotating with the shaft acting at radii of 0.3 m and placed at 0.5 m from each bearing centers, estimate the magnitude of the two balance masses and their orientation with respect to the X-axis, i.e. mass of 120 g.arrow_forward
- For an axisymmetric body under no force, prove (a) that the rate of retrograde precession can never be less than twice the rate of spin of the body about its axis of symmetry, (b) that in Fig. 18.24 the axis of symmetry of the body can never lie within the space cone. Reference to Figure 18.24:arrow_forwardThe 80-mm-radius gear shown has a mass of 5 kg and a centroidal radius of gyration of 60 mm. The 4-kg rod AB is attached to the center of the gear and to a pin at B that slides freely in a vertical slot. Knowing that the system is released from rest when 0 = 60°, determine the velocity of the center of the gear when 0 = 20°.arrow_forwardA truck with four wheels, each 750 mm diameter, travels on rails round a curve of 75 m at a speed of 50 km/h. The total mass of the truck is 5 t and its centre of gravity is midway between the axles, 1.05 m above the rails and midway between them. Each pair of wheels is driven by a motor rotating in the opposite direction to the wheels and at four times the speed. The moment of inertia of each pair of wheels is 15 Kgm2. The rails lie on a horizontal plane and 1.45 m apart. Determine the load on each rail.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY