Concept explainers
(a)
The component
(a)
Answer to Problem 18.34P
The component
Explanation of Solution
Given information:
The weight of the space probe
The radius of gyration along x axis
The radius of gyration along y axis
The radius of gyration along z axis
The weight of the meteorite (w) is 5 oz.
The angular velocity
The change in velocity of the mass center of the probe
The width of the side panel from center to point A (b) is 9 ft.
The length of the panel from center to point A (l) is 0.75 ft.
The speed is reduced by 25 percent.
Calculation:
Calculate the mass of the space probe
Here, g is the acceleration due to gravity.
Substitute
Calculate the mass of the meteorite (m) using the formula:
Substitute
Write the relative position vector
Substitute 9 ft for b and 0.75 ft.
Write the expression for the velocity
Calculate the initial liner momentum of the meteorite using the relation:
Substitute
Calculate the moment about origin
Substitute
The speed is reduced to 25 percent.
Calculate the final liner momentum of the meteorite using the relation:
Substitute
Calculate the final linear momentum of meteorite and its moment about the origin using the relation:
Substitute
The initial linear momentum of the space probe
Calculate the final linear momentum of the space probe using the relation:
Substitute
Substitute -0.675 in./s for
Calculate the final angular momentum of the space probe
Substitute
Write the expression for the conservation of linear momentum of the probe plus the meteorite as follows:
Substitute
Equate the i component from the Equation (1).
Equate j component from the Equation (1).
Equate k component from the Equation (1).
Write the expression for the conservation of angular momentum about the origin as follows:
Substitute
Equate i component from the Equation (2).
Equate k component from the Equation (2).
Substitute –4,840 ft/s for
Thus, the component
(b)
The relative velocity
(b)
Answer to Problem 18.34P
The relative velocity
Explanation of Solution
Given information:
The weight of the space probe
The radius of gyration along x axis
The radius of gyration along y axis
The radius of gyration along z axis
The weight of the meteorite (w) is 5 oz.
The angular velocity
The change in velocity of the mass center of the probe
The width of the side panel from center to point A (b) is 9 ft.
The length of the panel from center to point A (l) is 0.75 ft.
The speed is reduced by 25 percent.
Calculation:
Find the velocity along z direction:
Equate j component from the equation (2).
Substitute -2160 ft/s for
Calculate the relative velocity
Substitute -2160 ft/s for
Thus, the relative velocity
Want to see more full solutions like this?
Chapter 18 Solutions
<LCPO> VECTOR MECH,STAT+DYNAMICS
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY