CALCULUS (CLOTH)
4th Edition
ISBN: 9781319050733
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.2, Problem 3E
To determine
The validity of Stokes’ theorem for the given vector field and surface, oriented with an upward-pointing normal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given the vector field and surface below
Verify Stokes' Theorem for the given vector field and surface, oriented with an upward-
pointing normal:
F = (e-z,0,0), the square with vertices (6, 0, 3), (6, 6, 3), (0, 6, 3), and (0, 0, 3).
SF• ds =
l, curl(F) · dS =
: Find a point-normal equation for the plane that is represented by the vector equation
(x. y, 2) = (-1, 6, 5) +4(3,0. 1) + 3(9. -1, 0).
Express your answer in the form x + by + cz – d = 0.
Enter the values of c and d (in that order) into the answer box below, separated with commas. e.g., 204.452
Chapter 18 Solutions
CALCULUS (CLOTH)
Ch. 18.1 - Prob. 1PQCh. 18.1 - Prob. 2PQCh. 18.1 - Prob. 3PQCh. 18.1 - Prob. 4PQCh. 18.1 - Prob. 5PQCh. 18.1 - Prob. 1ECh. 18.1 - Prob. 2ECh. 18.1 - Prob. 3ECh. 18.1 - Prob. 4ECh. 18.1 - Prob. 5E
Ch. 18.1 - Prob. 6ECh. 18.1 - Prob. 7ECh. 18.1 - Prob. 8ECh. 18.1 - Prob. 9ECh. 18.1 - Prob. 10ECh. 18.1 - Prob. 11ECh. 18.1 - Prob. 12ECh. 18.1 - Prob. 13ECh. 18.1 - Prob. 14ECh. 18.1 - Prob. 15ECh. 18.1 - Prob. 16ECh. 18.1 - Prob. 17ECh. 18.1 - Prob. 18ECh. 18.1 - Prob. 19ECh. 18.1 - Prob. 20ECh. 18.1 - Prob. 21ECh. 18.1 - Prob. 22ECh. 18.1 - Prob. 23ECh. 18.1 - Prob. 24ECh. 18.1 - Prob. 25ECh. 18.1 - Prob. 26ECh. 18.1 - Prob. 27ECh. 18.1 - Prob. 28ECh. 18.1 - Prob. 29ECh. 18.1 - Prob. 30ECh. 18.1 - Prob. 31ECh. 18.1 - Prob. 32ECh. 18.1 - Prob. 33ECh. 18.1 - Prob. 34ECh. 18.1 - Prob. 35ECh. 18.1 - Prob. 36ECh. 18.1 - Prob. 37ECh. 18.1 - Prob. 38ECh. 18.1 - Prob. 39ECh. 18.1 - Prob. 40ECh. 18.1 - Prob. 41ECh. 18.1 - Prob. 42ECh. 18.1 - Prob. 43ECh. 18.1 - Prob. 44ECh. 18.1 - Prob. 45ECh. 18.1 - Prob. 46ECh. 18.1 - Prob. 47ECh. 18.1 - Prob. 48ECh. 18.1 - Prob. 49ECh. 18.1 - Prob. 50ECh. 18.1 - Prob. 51ECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.2 - Prob. 3PQCh. 18.2 - Prob. 4PQCh. 18.2 - Prob. 5PQCh. 18.2 - Prob. 1ECh. 18.2 - Prob. 2ECh. 18.2 - Prob. 3ECh. 18.2 - Prob. 4ECh. 18.2 - Prob. 5ECh. 18.2 - Prob. 6ECh. 18.2 - Prob. 7ECh. 18.2 - Prob. 8ECh. 18.2 - Prob. 9ECh. 18.2 - Prob. 10ECh. 18.2 - Prob. 11ECh. 18.2 - Prob. 12ECh. 18.2 - Prob. 13ECh. 18.2 - Prob. 14ECh. 18.2 - Prob. 15ECh. 18.2 - Prob. 16ECh. 18.2 - Prob. 17ECh. 18.2 - Prob. 18ECh. 18.2 - Prob. 19ECh. 18.2 - Prob. 20ECh. 18.2 - Prob. 21ECh. 18.2 - Prob. 22ECh. 18.2 - Prob. 23ECh. 18.2 - Prob. 24ECh. 18.2 - Prob. 25ECh. 18.2 - Prob. 26ECh. 18.2 - Prob. 27ECh. 18.2 - Prob. 28ECh. 18.2 - Prob. 29ECh. 18.2 - Prob. 30ECh. 18.2 - Prob. 31ECh. 18.2 - Prob. 32ECh. 18.2 - Prob. 33ECh. 18.2 - Prob. 34ECh. 18.2 - Prob. 35ECh. 18.2 - Prob. 36ECh. 18.2 - Prob. 37ECh. 18.2 - Prob. 38ECh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.3 - Prob. 3PQCh. 18.3 - Prob. 4PQCh. 18.3 - Prob. 5PQCh. 18.3 - Prob. 1ECh. 18.3 - Prob. 2ECh. 18.3 - Prob. 3ECh. 18.3 - Prob. 4ECh. 18.3 - Prob. 5ECh. 18.3 - Prob. 6ECh. 18.3 - Prob. 7ECh. 18.3 - Prob. 8ECh. 18.3 - Prob. 9ECh. 18.3 - Prob. 10ECh. 18.3 - Prob. 11ECh. 18.3 - Prob. 12ECh. 18.3 - Prob. 13ECh. 18.3 - Prob. 14ECh. 18.3 - Prob. 15ECh. 18.3 - Prob. 16ECh. 18.3 - Prob. 17ECh. 18.3 - Prob. 18ECh. 18.3 - Prob. 19ECh. 18.3 - Prob. 20ECh. 18.3 - Prob. 21ECh. 18.3 - Prob. 22ECh. 18.3 - Prob. 23ECh. 18.3 - Prob. 24ECh. 18.3 - Prob. 25ECh. 18.3 - Prob. 26ECh. 18.3 - Prob. 27ECh. 18.3 - Prob. 28ECh. 18.3 - Prob. 29ECh. 18.3 - Prob. 30ECh. 18.3 - Prob. 31ECh. 18.3 - Prob. 32ECh. 18.3 - Prob. 33ECh. 18.3 - Prob. 34ECh. 18.3 - Prob. 35ECh. 18.3 - Prob. 36ECh. 18.3 - Prob. 37ECh. 18.3 - Prob. 38ECh. 18.3 - Prob. 39ECh. 18.3 - Prob. 40ECh. 18.3 - Prob. 41ECh. 18.3 - Prob. 42ECh. 18.3 - Prob. 43ECh. 18.3 - Prob. 44ECh. 18 - Prob. 1CRECh. 18 - Prob. 2CRECh. 18 - Prob. 3CRECh. 18 - Prob. 4CRECh. 18 - Prob. 5CRECh. 18 - Prob. 6CRECh. 18 - Prob. 7CRECh. 18 - Prob. 8CRECh. 18 - Prob. 9CRECh. 18 - Prob. 10CRECh. 18 - Prob. 11CRECh. 18 - Prob. 12CRECh. 18 - Prob. 13CRECh. 18 - Prob. 14CRECh. 18 - Prob. 15CRECh. 18 - Prob. 16CRECh. 18 - Prob. 17CRECh. 18 - Prob. 18CRECh. 18 - Prob. 19CRECh. 18 - Prob. 20CRECh. 18 - Prob. 21CRECh. 18 - Prob. 22CRECh. 18 - Prob. 23CRECh. 18 - Prob. 24CRECh. 18 - Prob. 25CRECh. 18 - Prob. 26CRECh. 18 - Prob. 27CRECh. 18 - Prob. 28CRECh. 18 - Prob. 29CRECh. 18 - Prob. 30CRECh. 18 - Prob. 31CRECh. 18 - Prob. 32CRECh. 18 - Prob. 33CRECh. 18 - Prob. 34CRECh. 18 - Prob. 35CRECh. 18 - Prob. 36CRECh. 18 - Prob. 37CRECh. 18 - Prob. 38CRECh. 18 - Prob. 39CRECh. 18 - Prob. 40CRECh. 18 - Prob. 41CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- If the vector field given below section c describes the velocity of a fluid and you place a small cork in the plane at (2, 0), what path will it follow? Vector fields Sketch representative vectors of the following vector fields.a. F (x, y) = ⟨0, x⟩ = x j (a shear field)b. F (x, y) = ⟨1 - y2, 0⟩ = (1 - y2) i, for | y | ≤ 1 (channel flow)c. F (x, y) = ⟨ -y, x⟩ = -y i + x j (a rotation field)arrow_forwardWhat is the normal vector of the corresponding scalar equation of the following plane? 7' = = (2,−5,2) + s(1,4,2) +t(-2,-3,1).arrow_forward2.Vector analysis (calculus 4)arrow_forward
- Find the unit tangent vector T, the unit normal vector N, and the binormal vector B for curve r at the point (x, y, z) = (7,0,0). r(t) = (7 cos(t), 7 sin(t), 7 In(cos(t))) (Give your answers using component form (*, *, *). Express numbers in exact form. Enter 0 for a null vector.) T = N = B = Find the equation of the osculating plane at the point (x, y, z) = (7,0,0). osculating plane:arrow_forward4. (a) Let V = R* and let B be the standard dot product on V. (i) Calculate B((1,0, 1,0), (0, 1,0, 1)). (ii) If u = (x1,..., x4) E V, show that B(u, u) = u · u > 0. (iii) Give an example of a vector of length 3. (iv) If u = (1,0, 1,0) e V, find S = {v € V : B(u, v) = 0} and state the dimension of S. (b) If V = R", and U is a subspace of V of dimension m with 0 < m< n, prove that U- = {v € V : B(u, v) = 0 for all u E U} %3D is a subspace of V, and state (using a theorem from class if needed) its dimension. (c) If V = R² define 3 1 Y1 В(21, т2), (ул, у2)) :%3 (21, х). 1 4 Y2 and show that ß is a positive definite scalar product on V. (d) Use the Gram-Schmidt process to find an orthonormal basis of R³ that contains a scalar multiple of the vector v1 = (1,0, –1).arrow_forwardprovide answer in well formatarrow_forward
- Let 4(x - 1) + 8(y – 5) − (z + 9) = 0 represent a plane in space. What is the normal vector to this plane? n =arrow_forwardFind the vector component of H normal to surface p = 1arrow_forwardAnswer the given question with a proper explanation and step-by-step solution. Please provide the answer using the math tool otherwise I give the downvote.arrow_forward
- 2. Let C, be a curve defined by some vector function R with unit binormal B such that Ř(0) = (-2, 5,4) , (71) = (4,0, 3) , and B(t) = cos t. sin t,). 3 cos t, sin t, (a) Find the equation of the osculating plane to C1 at t = 0. (b) Find the unit normal vector to C1 at t = 7 (c) Evaluate (R. BY(0).arrow_forwardplease help with this!arrow_forwardjust do 13.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY