Solutions for CALCULUS (CLOTH)
Browse All Chapters of This Textbook
Chapter 1 - Precalculus ReviewChapter 1.1 - Real Numbers, Functions, And GraphsChapter 1.2 - Linear And Quadratic FunctionsChapter 1.3 - The Basic Classes Of FunctionsChapter 1.4 - Trigonometric FunctionsChapter 1.5 - Technology: Calculators And ComputersChapter 2 - LimitsChapter 2.1 - The Limit Idea: Instantaneous Velocity And Tangent LinesChapter 2.2 - Investigating LimitsChapter 2.3 - Basic Limit Laws
Chapter 2.4 - Limits And ContinuityChapter 2.5 - Indeterminate FormsChapter 2.6 - The Squeeze Theorem And Trigonometric LimitsChapter 2.7 - Limits At InfinityChapter 2.8 - The Intermediate Value TheoremChapter 2.9 - The Formal Definition Of A LimitChapter 3 - DifferentiationChapter 3.1 - Definition Of The DerivativeChapter 3.2 - The Derivative As A FunctionChapter 3.3 - Product And Quotient RulesChapter 3.4 - Rates Of ChangeChapter 3.5 - Higher DerivativesChapter 3.6 - Trigonometric FunctionsChapter 3.7 - The Chain RuleChapter 3.8 - Implicit DifferentiationChapter 3.9 - Related RatesChapter 4 - Applications Of The DerivativeChapter 4.1 - Linear Approximation And ApplicationsChapter 4.2 - Extreme ValuesChapter 4.3 - The Mean Value Theorem And MonotonicityChapter 4.4 - The Second Derivative And ConcavityChapter 4.5 - Analyzing And Sketching Graphs Of FunctionsChapter 4.6 - Applied OptimizationChapter 4.7 - Newton's MethodChapter 5 - IntegrationChapter 5.1 - Approximating And Computing AreaChapter 5.2 - The Definite IntegralChapter 5.3 - The Indefinite IntegralChapter 5.4 - The Fundamental Theorem Of Calculus, Part IChapter 5.5 - The Fundamental Theorem Of Calculus, Part IiChapter 5.6 - Net Change As The Integral Of A Rate Of ChangeChapter 5.7 - The Substitution MethodChapter 6 - Applications Of The IntegralChapter 6.1 - Area Between Two CurvesChapter 6.2 - Setting Up Integrals: Volume, Density, Average ValueChapter 6.3 - Volumes Of Revolution: Disks And WashersChapter 6.4 - Volumes Of Revolution: Cylindrical ShellsChapter 6.5 - Work And EnergyChapter 7 - Exponential And Logarithmic FunctionsChapter 7.1 - The Derivative Of F(x) = B^x And The Number EChapter 7.2 - Inverse FunctionsChapter 7.3 - Logarithmic Functions And Their DerivativesChapter 7.4 - Applications Of Exponential And Logarithimic FunctionsChapter 7.5 - L'hospital's RultChapter 7.6 - Inverse Trigonometric FunctionsChapter 7.7 - Hyperbolic FunctionsChapter 8 - Techniques Of IntegrationChapter 8.1 - Integration By PartsChapter 8.2 - Trigonometric IntegralsChapter 8.3 - Trigonometric SubstitutionChapter 8.4 - Integrals Involving Hyperbolic And Inverse Hyperbolic FunctionsChapter 8.5 - The Method Of Partial FractionsChapter 8.6 - Strategies For IntegrationChapter 8.7 - Improper IntegralsChapter 8.8 - Numerical IntegrationChapter 9 - Further Applications Of The IntegralChapter 9.1 - Probability And IntegrationChapter 9.2 - Arc Length And Surface AreaChapter 9.3 - Fluid Pressure And ForceChapter 9.4 - Center Of MassChapter 10 - Introduction To Differential EquationsChapter 10.1 - Solving Differential EquationsChapter 10.2 - Models Involving Y′ = K(y − B)Chapter 10.3 - Graphical And Numerical MethodsChapter 10.4 - The Logistic EquationChapter 10.5 - First-order Linear EquationsChapter 11 - Infinite SeriesChapter 11.1 - SequencesChapter 11.2 - Summing An Infinite SeriesChapter 11.3 - Convergence Of Series With Positive TermsChapter 11.4 - Absolute And Conditional ConvergenceChapter 11.5 - The Ratio And Root Tests And Strategies For Choosing TestsChapter 11.6 - Power SeriesChapter 11.7 - Taylor PolynomialsChapter 11.8 - Taylor SeriesChapter 12 - Parametric Equations, Polar Coordinates, And Conic SectionsChapter 12.1 - Parametric EquationsChapter 12.2 - Arc Length And SpeedChapter 12.3 - Polar CoordinatesChapter 12.4 - Area And Arc Length In Polar CoordinatesChapter 12.5 - Conic SectionsChapter 13 - Vector GeometryChapter 13.1 - Vectors In The PlaneChapter 13.2 - Three-dimensional Space: Surfaces, Vectors, And CurvesChapter 13.3 - Dot Product And The Angle Between Two VectorsChapter 13.4 - The Cross ProductChapter 13.5 - Planes In 3-spaceChapter 13.6 - A Survey Of Quadric SurfacesChapter 13.7 - Cylindrical And Spherical CoordinatesChapter 14 - Calculus Of Vector-valued FunctionsChapter 14.1 - Vector-valued FunctionsChapter 14.2 - Calculus Of Vector-valued FunctionsChapter 14.3 - Arc Length And SpeedChapter 14.4 - CurvatureChapter 14.5 - Motion In 3-spaceChapter 14.6 - Planetary Motion According To Kepler And NewtonChapter 15 - Differentiation In Several VariablesChapter 15.1 - Functions Of Two Or More VariablesChapter 15.2 - Limits And Continuity In Several VariablesChapter 15.3 - Partial DerivativesChapter 15.4 - Differentiability, Tangent Planes, And Linear ApproximationChapter 15.5 - The Gradient And Directional DerivativesChapter 15.6 - Multivariable Calculus Chain RulesChapter 15.7 - Optimization In Several VariablesChapter 15.8 - Lagrange Multipliers: Optimizing With A ConstraintChapter 16 - Multiple IntegrationChapter 16.1 - Integration In Two VariablesChapter 16.2 - Double Integrals Over More General RegionsChapter 16.3 - Triple IntegralsChapter 16.4 - Integration In Polar, Cylindrical, And Spherical CoordinatesChapter 16.5 - Applications Of Multiple IntegralsChapter 16.6 - Change Of VariablesChapter 17 - Line And Surface IntegralsChapter 17.1 - Vector FieldsChapter 17.2 - Line IntegralsChapter 17.3 - Conservative Vector FieldsChapter 17.4 - Parametrized Surfaces And Surface IntegralsChapter 17.5 - Surface Integrals Of Vector FieldsChapter 18 - Fundamental Theorems Of Vector AnalysisChapter 18.1 - Green’s TheoremChapter 18.2 - Stokes’ TheoremChapter 18.3 - Divergence TheoremChapter A - The Language Of MathematicsChapter C - Induction And The Binomial Theorem
Sample Solutions for this Textbook
We offer sample solutions for CALCULUS (CLOTH) homework problems. See examples below:
Calculation: (a)2a3b which cannot be simplified further hence none of the option can be matched....Given: s(t)=t2+1t∈[2,5] Formula used: Average velocity = Displacement ChangeTime ChangeInstantaneous...Given: The graph of the function is Formula used: The average rate of change of f(x) over [a,b] is,...Given: The expression is 8.113−2. Formula used: Linear Approximation: Δf=f′(a)Δx Calculation: The...Given: The function graph is shown Formula used: L4=h∑k=03f(xk) M4=h∑k=04f(xk*) h=b−an Calculation:...Given: The figure is: The functions are y=2−x2 and y=−2. Formula used: Area of the region...Given: The given function is ddx(2x) . Calculation: Given: ddx(2x) Use derivative exponent rule...Compare the integrals and the functions without evaluating the integrals to identify the correct...Given information: X is a continuous random variable with probability density p(x)=1π(x2+1) ....
Given information:The differential equation is y'=y5−3x4y . Definition used:The order of a...Given: an = n−3n! Calculation: Here, we have an = n−3n!⇒an2 =(n−3n!)2 The first three terms of an2...Given: a. c(t)=(t2,t+3) b. c(t)=(t2,t−3). c. c(t)=(t2,3−t) d. c(t)=(t−3,t2) Calculation: Assume...Given: v=〈−2,5〉 w=〈3,−2〉 Key concepts applied: Vector operations Vector addition To add the vectors...Given: We have been given a vector valued function: r1(t)=〈t−1,(t+1)−1,sin−1t〉 Key concepts used:...Domain: The domain of the function is defined as the set of complete possible values which will make...Given: The integral: ∫14∫26x2y dx dy Formulas: Sm,n=∑i=1m∑j=1nf(xi,yj)ΔA Where ΔA=Δx⋅ΔyΔx=b−am and...Given: The given vector field is F→=〈xy,y−x〉 Calculation: Here, F→=〈xy,y−x〉 Vector assigned to the...Given: A multivariable vector field f(x,y)=〈x+y2,x2−y〉. A unit circle C oriented counter-clockwise....Given: A⇒B (A conditional statement) Options are: (a)B⇒A (b)~B⇒A (c)~B⇒~A (d)~A ⇒~ B Definition: The...Given info. 1+2+3+..............+n=n(n+1)2 If (1) the statement is true for n=1 and (2) When a...
More Editions of This Book
Corresponding editions of this textbook are also available below:
CALCULUS LL+ACHIEVE 4 TERM >CSI CUSTOM<
21st Edition
ISBN: 9781319438357
EBK CALCULUS
2nd Edition
ISBN: 8220101443229
CALCULUS EBK W/WEBASSIGN >I<
3rd Edition
ISBN: 9781319049119
Calculus - Standalone book
3rd Edition
ISBN: 9781464125263
CALC LT 3E C & WA PREM ACCESS & FLY
3rd Edition
ISBN: 9781319111960
CALCULUS W/WEBASSIGN >IC<
3rd Edition
ISBN: 9781319048532
Calculus
3rd Edition
ISBN: 9781319116446
EBK CALCULUS
4th Edition
ISBN: 9781319055844
ACHIEVE STANDALONE ACCESS F/ CALC 4E
4th Edition
ISBN: 9781319434540
CALCULUS 4E (LL) W/ ACHIEVE ACCESS
4th Edition
ISBN: 9781319434526
CALCULUS W/SAPLING ACCESS >IC<
4th Edition
ISBN: 9781319323394
CALCULUS EBOOK W/SAPLING ACCESS
4th Edition
ISBN: 9781319336400
CALCULUS LL+ACHIEVE 1 TERM >CSI CUSTOM<
4th Edition
ISBN: 9781319411671
CALCULUS W/WEBASSIGN (3 SEMESTER) >IC<
17th Edition
ISBN: 9781319045319
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.