Concept explainers
(a)
Domain of the given

Answer to Problem 1CRE
Solution:
Domain of the given vector-valued function is .
Explanation of Solution
Given:
We have been given a vector valued function:
Key concepts used:
Domain of a rational function is all real numbers except when denominator is zero. Domain of inverse sine function is
Calculation:
In order to find the domain of a vector valued function, we find the domains of all the components of the vector function and then we consider the intersection of all the domains.
Domain of the first component is all real numbers except 0. Thus, domain of the first component is .
Domain of the second component is all real numbers except . Thus, domain of the second component is .
Domain of the third component is .
For writing the domain of the entire vector valued function, we consider the intersection of all three domains. Thus, the domain of the given vector valued function is .
Conclusion:
The domain of the given vector valued function has been found by first finding the domains of each of the components and then considering the intersection.
(b)
Domain of the given vector valued function.

Answer to Problem 1CRE
Solution:
Domain of the given vector-valued function is .
Explanation of Solution
Given:
We have been given a vector valued function:
Key concepts used:
Domain of a rational function is all real numbers except when denominator is zero. Domain of inverse sine function is
Calculation:
In order to find the domain of a vector valued function, we find the domains of all the components of the vector function and then we consider the intersection of all the domains.
Domain of the first component is .
Domain of the second component is .
Domain of the third component is .
For writing the domain of the entire vector valued function, we consider the intersection of all three domains. Thus, the domain of the given vector valued function is .
Conclusion:
The domain of the given vector valued function has been found by first finding the domains of each of the components and then considering the intersection.
Want to see more full solutions like this?
Chapter 14 Solutions
CALCULUS (CLOTH)
- Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below. Let g(x) = √ƒƒ(t) dt . 0 3 2 -2 2 4 5 6 7 8 9 10 11 12 13 14 15 1. g(0) = 2. g(2) = 3. g(4) = 4. g(6) = 5. g'(3) = 6. g'(13)=arrow_forwardThe expression 3 | (3+1/+1) of the following integrals? A Ов E + + + + 18 3+1+1 3++1 3++1 (A) √2×14 dx x+1 (C) 1½-½√ √ ² ( 14 ) d x (B) √31dx (D) So 3+x -dx is a Riemann sum approximation of which 5 (E) 1½√√3dx 2x+1arrow_forward2. Suppose the population of Wakanda t years after 2000 is given by the equation f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000 people? Show all your work, round your answer to two decimal places, and include units. (4 points)arrow_forward
- 3. Solve the equation, give the answer exactly (no calculator approximations), and show all your work. (4 points) log5 2x = 3arrow_forwardLet I = f(x) dx, where f is the function whose graph is shown. 4 2 y f X 1 2 3 4 (a) Use the graph to find L2, R2 and M2. R₂ M2 = = = (b) Are these underestimates or overestimates of I? O 42 is an underestimate. O 42 is an overestimate. ◇ R2 is an underestimate. OR2 is an overestimate. OM2 is an underestimate. ○ M2 is an overestimate. (c) Use the graph to find T2. T₂ =arrow_forwardVector u has a magnitude of 23 and vector v has a magnitude of 83. The angle between the two vectors is 126 degrees.a) Draw a fully-labelled vector diagram showing the two vectors and the resultant vector when they are added together.b) Find the magnitude of the resultant vector.c) Find the direction of the resultant vector relative to vector u. Solding by finding the x and y of the vectors and addingarrow_forward
- 3) If a is a positive number, what is the value of the following double integral? 2a Love Lv 2ay-y² .x2 + y2 dadyarrow_forward16. Solve each of the following equations for x. (a) 42x+1 = 64 (b) 27-3815 (c) 92. 27² = 3-1 (d) log x + log(x - 21) = 2 (e) 3 = 14 (f) 2x+1 = 51-2xarrow_forward11. Find the composition fog and gof for the following functions. 2 (a) f(x) = 2x+5, g(x) = x² 2 (b) f(x) = x²+x, g(x) = √√x 1 (c) f(x) = -1/2) 9 9(x) = х = - Xarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





