CALCULUS (CLOTH)
4th Edition
ISBN: 9781319050733
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 18.2, Problem 18E
To determine
Circulation of around the boundary of S in counterclockwise direction when viewed from above using Stokes Theorem.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let Q be the rectangle formed by (0, 0, 0), (1, 0, 0), (0, 1, 1) and (1, 1, 1) oriented CCW as
x² dx +
viewed from above (from the positive z-axis). Use Stokes' Theorem to calculate 1.
y²dy - xdz.
Find the scalar component of H tangential to the plane z=0
please help me
Chapter 18 Solutions
CALCULUS (CLOTH)
Ch. 18.1 - Prob. 1PQCh. 18.1 - Prob. 2PQCh. 18.1 - Prob. 3PQCh. 18.1 - Prob. 4PQCh. 18.1 - Prob. 5PQCh. 18.1 - Prob. 1ECh. 18.1 - Prob. 2ECh. 18.1 - Prob. 3ECh. 18.1 - Prob. 4ECh. 18.1 - Prob. 5E
Ch. 18.1 - Prob. 6ECh. 18.1 - Prob. 7ECh. 18.1 - Prob. 8ECh. 18.1 - Prob. 9ECh. 18.1 - Prob. 10ECh. 18.1 - Prob. 11ECh. 18.1 - Prob. 12ECh. 18.1 - Prob. 13ECh. 18.1 - Prob. 14ECh. 18.1 - Prob. 15ECh. 18.1 - Prob. 16ECh. 18.1 - Prob. 17ECh. 18.1 - Prob. 18ECh. 18.1 - Prob. 19ECh. 18.1 - Prob. 20ECh. 18.1 - Prob. 21ECh. 18.1 - Prob. 22ECh. 18.1 - Prob. 23ECh. 18.1 - Prob. 24ECh. 18.1 - Prob. 25ECh. 18.1 - Prob. 26ECh. 18.1 - Prob. 27ECh. 18.1 - Prob. 28ECh. 18.1 - Prob. 29ECh. 18.1 - Prob. 30ECh. 18.1 - Prob. 31ECh. 18.1 - Prob. 32ECh. 18.1 - Prob. 33ECh. 18.1 - Prob. 34ECh. 18.1 - Prob. 35ECh. 18.1 - Prob. 36ECh. 18.1 - Prob. 37ECh. 18.1 - Prob. 38ECh. 18.1 - Prob. 39ECh. 18.1 - Prob. 40ECh. 18.1 - Prob. 41ECh. 18.1 - Prob. 42ECh. 18.1 - Prob. 43ECh. 18.1 - Prob. 44ECh. 18.1 - Prob. 45ECh. 18.1 - Prob. 46ECh. 18.1 - Prob. 47ECh. 18.1 - Prob. 48ECh. 18.1 - Prob. 49ECh. 18.1 - Prob. 50ECh. 18.1 - Prob. 51ECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.2 - Prob. 3PQCh. 18.2 - Prob. 4PQCh. 18.2 - Prob. 5PQCh. 18.2 - Prob. 1ECh. 18.2 - Prob. 2ECh. 18.2 - Prob. 3ECh. 18.2 - Prob. 4ECh. 18.2 - Prob. 5ECh. 18.2 - Prob. 6ECh. 18.2 - Prob. 7ECh. 18.2 - Prob. 8ECh. 18.2 - Prob. 9ECh. 18.2 - Prob. 10ECh. 18.2 - Prob. 11ECh. 18.2 - Prob. 12ECh. 18.2 - Prob. 13ECh. 18.2 - Prob. 14ECh. 18.2 - Prob. 15ECh. 18.2 - Prob. 16ECh. 18.2 - Prob. 17ECh. 18.2 - Prob. 18ECh. 18.2 - Prob. 19ECh. 18.2 - Prob. 20ECh. 18.2 - Prob. 21ECh. 18.2 - Prob. 22ECh. 18.2 - Prob. 23ECh. 18.2 - Prob. 24ECh. 18.2 - Prob. 25ECh. 18.2 - Prob. 26ECh. 18.2 - Prob. 27ECh. 18.2 - Prob. 28ECh. 18.2 - Prob. 29ECh. 18.2 - Prob. 30ECh. 18.2 - Prob. 31ECh. 18.2 - Prob. 32ECh. 18.2 - Prob. 33ECh. 18.2 - Prob. 34ECh. 18.2 - Prob. 35ECh. 18.2 - Prob. 36ECh. 18.2 - Prob. 37ECh. 18.2 - Prob. 38ECh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.3 - Prob. 3PQCh. 18.3 - Prob. 4PQCh. 18.3 - Prob. 5PQCh. 18.3 - Prob. 1ECh. 18.3 - Prob. 2ECh. 18.3 - Prob. 3ECh. 18.3 - Prob. 4ECh. 18.3 - Prob. 5ECh. 18.3 - Prob. 6ECh. 18.3 - Prob. 7ECh. 18.3 - Prob. 8ECh. 18.3 - Prob. 9ECh. 18.3 - Prob. 10ECh. 18.3 - Prob. 11ECh. 18.3 - Prob. 12ECh. 18.3 - Prob. 13ECh. 18.3 - Prob. 14ECh. 18.3 - Prob. 15ECh. 18.3 - Prob. 16ECh. 18.3 - Prob. 17ECh. 18.3 - Prob. 18ECh. 18.3 - Prob. 19ECh. 18.3 - Prob. 20ECh. 18.3 - Prob. 21ECh. 18.3 - Prob. 22ECh. 18.3 - Prob. 23ECh. 18.3 - Prob. 24ECh. 18.3 - Prob. 25ECh. 18.3 - Prob. 26ECh. 18.3 - Prob. 27ECh. 18.3 - Prob. 28ECh. 18.3 - Prob. 29ECh. 18.3 - Prob. 30ECh. 18.3 - Prob. 31ECh. 18.3 - Prob. 32ECh. 18.3 - Prob. 33ECh. 18.3 - Prob. 34ECh. 18.3 - Prob. 35ECh. 18.3 - Prob. 36ECh. 18.3 - Prob. 37ECh. 18.3 - Prob. 38ECh. 18.3 - Prob. 39ECh. 18.3 - Prob. 40ECh. 18.3 - Prob. 41ECh. 18.3 - Prob. 42ECh. 18.3 - Prob. 43ECh. 18.3 - Prob. 44ECh. 18 - Prob. 1CRECh. 18 - Prob. 2CRECh. 18 - Prob. 3CRECh. 18 - Prob. 4CRECh. 18 - Prob. 5CRECh. 18 - Prob. 6CRECh. 18 - Prob. 7CRECh. 18 - Prob. 8CRECh. 18 - Prob. 9CRECh. 18 - Prob. 10CRECh. 18 - Prob. 11CRECh. 18 - Prob. 12CRECh. 18 - Prob. 13CRECh. 18 - Prob. 14CRECh. 18 - Prob. 15CRECh. 18 - Prob. 16CRECh. 18 - Prob. 17CRECh. 18 - Prob. 18CRECh. 18 - Prob. 19CRECh. 18 - Prob. 20CRECh. 18 - Prob. 21CRECh. 18 - Prob. 22CRECh. 18 - Prob. 23CRECh. 18 - Prob. 24CRECh. 18 - Prob. 25CRECh. 18 - Prob. 26CRECh. 18 - Prob. 27CRECh. 18 - Prob. 28CRECh. 18 - Prob. 29CRECh. 18 - Prob. 30CRECh. 18 - Prob. 31CRECh. 18 - Prob. 32CRECh. 18 - Prob. 33CRECh. 18 - Prob. 34CRECh. 18 - Prob. 35CRECh. 18 - Prob. 36CRECh. 18 - Prob. 37CRECh. 18 - Prob. 38CRECh. 18 - Prob. 39CRECh. 18 - Prob. 40CRECh. 18 - Prob. 41CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Use Stokes' Theorem to find the circulation of F = 5yi + 3zj + 6xk around a circle C of radius 7 centered at (5, 2, 7) in the plane z = 7, oriented counterclockwise when viewed from above. Circulation = [² с F. dr =arrow_forwardc) Verify Stokes's Theorem for F = (x²+y²)i-2xyj takes around the rectangle bounded by the lines x=2, x=-2, y=0 and y=4arrow_forwardFind a vector normal to the surface x2 + yz = 5 at (2, 1, 1).arrow_forward
- 3. Let the curve C be the intersection of the cylinder 2²+y² = 1 and the plane 2r+2y+= = 3. oriented counter-clockwise when viewed from above, that is from the positive z-axis. (a) Make a clear sketch of the curve C and its orientation. (b) Calculate the circulation of F(x, y, theorem. z)=-y³i+x³jk around C using Stokesarrow_forwardUse Stokes' Theorem to find the circulation of F = 3yi + 2zj + 2xk around the triangle obtained by tracing out the path (4, 0, 0) to (4, 0, 6), to (4, 6, 6) back to (4, 0, 0). Circulation = [ F . dr =arrow_forwardA surface z = f(x,y) is defined implicitly by the equation x + y + z – e² = 3 – e. Determine the equation of the tangent plane to the surface at the point (1, 1, 1). Write down a normal vector to the surface at (1,1, 1).arrow_forward
- Let S be the surface obtained by revolving the plane curve 2x=sqrt(9−y2) about the y-axis.Obtain a vector equation for S and use it to find the equation of the tangent plane to S at the point (-1,1,-1).arrow_forwardLet F = Use Stokes' Theorem to evaluate So F. dr, where C is the curve of intersection of the parabolic cylinder z = y² - x and the circular cylinder x² + y² = 1, oriented counterclockwise as viewed from above.arrow_forwardFind the vector component of H normal to surface p = 1arrow_forward
- Let S be the portion of the plane z = 2x that is inside the cylinder of radius R centered around the z-axis and above the x-y plane. Use Stokes' Theorem to calculate the circulation of – yz, -y² + 3x²y+ z) ,2, F (x + y², 2x³ around the boundary of S (a half-ellipse) in the counter-clockwise direction when viewed from above.arrow_forwardLet C be the curve defined by the following system of equations: √x+6y²-2²=0 3y = zarrow_forwardGive a scalar equation for a plane at distance 6 from the plane P with equation 2x+y-2z = 5. 0=0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY