VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18.2, Problem 18.84P
The essential structure of a certain type of aircraft turn indicator is shown. Each spring has a constant of 500 N/m, and the 200-g uniform disk of 40-mm radius spins at the rate of 10 000 rpm. The springs are stretched and exert equal vertical forces on yoke AB when the airplane is traveling in a straight path. Determine the angle through which the yoke will rotate when the pilot executes a horizontal turn of 750-m radius to the right at a speed of 800 km/h. Indicate whether point A will move up or down.
Fig. P18.84
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A torque T of 100 N-m is applied to a wheel D having a mass of 50 kg. a diame- ter of 600 mm, and a radius of gyration of 280 mm. The wheel D is attached by a light member AB to a slider C having a mass of 30 kg. If the system is at rest at the instant shown, what is the acceleration of slider C? What is the axial force in member AB? Neglect friction everywhere, and neglect the inertia of the memberAB. (Draw FBDs)
Each paddle wheel of a steamer have a mass of 1600 kg and a radius of gyration of 1.2 meters. The steamer turns to port in a circle of 160 meters radius at 24 km/hr. The speed of the paddle is 90 rpm. Determine the magnitude and effect of the gyroscopic couple acting on the steamer.
Consider the wheel shown below with radius R, mass m, and radius of gyration ko¹ The wheel
rolls without slipping under the action of a clockwise torque M. At the instant shown the spring
with spring constant ks is unstretched. Derive an expression for the velocity of the wheel center
of mass G after the center of mass has moved a distance d. (Hint: Use rigid body work-energy
principles. The work done to the system by the applied moment is McA0 and A0 can be related to the
distace d by the no-slip condition.)
Us
G
R
M
м, ко
////
Chapter 18 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
Ch. 18.1 - A thin, homogeneous disk of mass m and radius r...Ch. 18.1 - Prob. 18.2PCh. 18.1 - 18.3 Two uniform rods AB and CE, each of weight 3...Ch. 18.1 - A homogeneous disk of weight W = 6 lb rotates at...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10PCh. 18.1 - Prob. 18.11P
Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. Determine the angular acceleration of a flywheel in the form of a disc 400 mm in diameter and having a mass of 60 kg, if the applied torque is 24 Nm.arrow_forwardAn aeroplane runs at 600 km/ h. The rotor of the engine weighs 4000 N with radius of gyration of 1 metre. The speed of rotor is 3000 rpm in anticlockwise direction when seen from rear side of the aeroplane. If the plane takes left turn in a curve of 100 metres radius, find: 1. gyroscopic couple developed; and 2. effect of reaction gyroscopic couple developed on the body of aeroplane by using vector diagram.arrow_forwardIt is hard that is why I did ask for helparrow_forward
- Model the arm ABC as a single rigid body. Its mass is 320 kg, and the moment of inertia about its center of mass is | = 390 kg-m². Starting from rest with its center of mass 1.4 m above the ground (position 1), the ABC is pushed upward by the hydraulic cylinders. When it is in the position shown (position 2), the arm has a counterclockwise angular velocity of 1.0 rad/s. How much work do the hydraulic cylinders do on the arm in moving it from position 1 to position 2? Th -1.80 m -1.40 m- B 0.30 m 0.80 m 0.70 m 2.25 m Carrow_forward2 An object is made of two identical uniform 3m long rods connected as shown. The total mass of the system is 60kg. The object can rotate in the plane of the page about a fixed axis at Point A. There is a friction moment of 500 N m about point A. a. What is the mass moment of inertia of the object about Point A? b. If the object is released from rest in the orientation shown, what will be is initial angular acceleration? stationary Mf A = total mass= 60 kg 500 Nm 3 m 3 m garrow_forwardExactly one turn of a flexible rope with mass m is wrapped around a uniform cylinder with mass M and radius R. The cylinder rotates without friction about a horizontal axle along the cylinder axis. One end of the rope is attached to the cylinder. The cylinder starts with angular speed v0 . After one revolution of the cylinder the rope has unwrapped and, at this instant, hangs vertically down, tangent to the cylinder. Find the angular speed of the cylinder and the linear speed of the lower end of the rope at this time. Ignore the thickness of the rope.arrow_forward
- Solve all subparts.arrow_forwardThe turbine rotor of a ship has a mass of 4000 kg and a radius of gyration of 480 mm. It rotates at 2400 rev/min. clockwise when looking forward from the stern. In each of the following cases, determine the magnitude and indicate clearly with suitable diagrams the effect of the gyroscopic couple acting on the ship: (a) (b) (c) If the ship, when travelling at 15 ms¹ turns to starboard in a curve of 1000m radius. If the ship is pitching and the bow is descending with maximum velocity. The pitching motion is simple harmonic, the period being 20 seconds and the total angular movement is 12º. If the ship is rolling and at a certain instant has an angular velocity of 0.02 rad/sec. clockwise when looking forward from the stern.arrow_forward1. The two wheels shown are two extreme cases for the distribution of mass in a wheel. The wheels have the same mass m and radius r, but for case A, all the mass is effectively concentrated at the center of the wheel, and in case B, all the mass is effectively concentrated at the radius r. Both are placed on the identically sloped surfaces and roll without slipping. a. What is the angular acceleration of A and B? (Review of general planar motion) b. What is the velocity of A and B after both have travelled an identical distance x down the inclined surface? Barrow_forward
- 6. The turbine of a ship has a mass of 4000 kg. and a radius of gyration of 480 mm. It rotates at 2400 rev/min. clockwise when looking forward from the stern. In each of the following cases determine, the magnitude and indicate clearly with suitable diagrams. the effect of the gyroscopic couple acting on the ship: (a) If the ship, when travelling at 15 ms¹ turns to starboard in a curve 1000 m radius. (b) If the ship is pitching and the bow is descending with maximum velocity. The pitching motion is simple harmonic, the period being 20 seconds and the total angular movement is 12º. (c) If the ship is rolling and at a certain instant has an angular velocity of 0.02 rad. s-¹ clockwise when looking forward from the stern.arrow_forwardK1=4 K2=10 K3=7 K4=4arrow_forwardA drum can rotate about a fixed-point O. The A block is attached to a cord wrapping around the drum. The mass of the drum is md = 100kg and the radius is r = 0.5 m. The radius of gyration of the drum about point O is ko=0.3 m. The mass of the block is mb= 20kg. The block is released from rest. The acceleration due to gravity g=9.81 m/s2 . (2) ) If the mass moment of inertia of the drum about point O is IO, and the angular acceleration of the drum is α, select the correct moment equation of the whole drum-block system about the point O._____________ A. mbgr=rmb(rα) B. 0 C. mbgr=Ioα +rmb(rα) D. mbgr=Ioαarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mod-01 Lec-16 Basics of Instrumentation; Author: nptelhrd;https://www.youtube.com/watch?v=qbKnW42ZM5c;License: Standard YouTube License, CC-BY