VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.3, Problem 18.117P
(a)
To determine
The approximate rate of steady precession of the projectile.
(b)
To determine
The exact values of two possible rates of precession.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
A homogeneous rad of mass M = 11 kg and length L = 12 m spins around its center of mass with an angular speed
w = 12 radian/s on a horizontal frictionless surface of a table. The location of the center of mass of the rod on the table is stationary
although the center of mass is not pivoted to the table. As the rod spins, a point-like particle of mass m = 2 kg is placed at rest on
the table as shown in the figure and the end of the rod collides elastically with it. After the collision, the rod has only a translational
motion, and no rotational motion. What is the speed v of the rod, in units of m/s, after the collision?
(Suggestion: You may use conservation of linear momentum and conservation of angular momentum (about the fixed point on the
table where the center of mass of the rod was initially spinning on.)
(The moment of inertia of the rod about the axis through the center of mass I = 1 ML?)
O 24.00
6.00
O 30.00
O 12.00
O 36.00
(b) Describe the phenomenon of combined
motion of rotation and translation with
a suitable example.
5. (a) State the laws of motion. Discuss the
first law in the light of second law.
(b) The sliders A and B in Fig. 1 are
connected by a light rigid bar of length
1 = 0·5 m and move with negligible
friction in the slots, both of which lie in
a horizontal plane :
6. (a)
B
( 6 )
3 kg
20AK/312
0.5 m
XA
74
A
2 kg
Fig. 1
For the position where xA = 0.5 m, the
velocity of A is UA = 0.9 m/s to the right.
Determine the acceleration of each
slider and the force in the bar at this
instant.
Define mass moment of inertia and
kinetic energy of rotation.
P = 40 N
Jul
8
4
(Continued)
(b) A sp
carr
ma
OS
ex
(c) F
7. (a
(
Chapter 18 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
Ch. 18.1 - A thin, homogeneous disk of mass m and radius r...Ch. 18.1 - Prob. 18.2PCh. 18.1 - 18.3 Two uniform rods AB and CE, each of weight 3...Ch. 18.1 - A homogeneous disk of weight W = 6 lb rotates at...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10PCh. 18.1 - Prob. 18.11P
Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A particle M1, weighing 2.4 Ibs, is tied to a thread and describes a circular path in a horizontal plane. The thread, of negligible mass, passes through a hole in the center of the circle and descends vertically. Another particle M2 is attached, weighing 5.0 Ibs, as shown in the figure. If M1 describes a uniform circular motion, with angular velocity w 3.1 rad/s, determine the radius R of the circumference in inches.arrow_forwardQ3. The double pulley shown in Fig Q3 has a mass of 14 kg and a centroidal radius of gyration of 165 mm. A and B are attached to cords that are wrapped around the pulley. µk = 0.25 between B and the surface. A friction moment exists in the axle of the pulley of 0.8 Nm. Knowing the system is released from rest, at the position shown, Using hand Calculations to determine, a) The velocity of A as it strikes the ground b) The total distance covered by B before it comes to rest. Using MATLAB to plot the variation of the velocity with the work done by the system. 250 mm 150 mm Not to scale m, = 9 kg B A m, = 11.5 kg 900 mm Fig. Q3arrow_forwardwe have a non-rotating space station in the shape of a long thin uniform rod of mass 2.95 x 10^6 kg and length 710 meters. Small probes of mass 5178 kg are periodically launched in pairs from two points on the rod-shaped part of the station as shown, launching at a speed of 4318 m/s with respect to the launch points, which are each located 199 m from the center of the rod. After 17 pairs of probes have launched, how fast will the station be spinning? a. 16.32 rpm b. 4.90 rpm c. 11.66 rpm d. 8.16 rpmarrow_forward
- A ball is fastened by a light inextensible cord 5m long to a point 3m above the level of a smooth horizontal table, and is than caused to rotate in a horizontal circle.Determine the following:(a) The angular velocity of the ball in rpm so as to just keep clear of the surface of the table.(b) If the mass of the ball is 6kg determine the tension in the string when it rotates at 17.3 rpm.arrow_forwardPlease help me with this question. Thankyou very much!arrow_forwardNOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Two small disks A and B of mass 3 kg and 1.5 kg, respectively, may slide on a horizontal, frictionless surface. They are connected by a cord 600 mm long and spin counterclockwise about their mass center Gat the rate of 15 rad/s. At t= O, the coordinates of Gare x = 0 and yo = 2 m, and its velocity is v0 = (1.2 m/s)i +(0.96 m/s)j. Shortly thereafter, the cord breaks; disk A is then observed to move along a path parallel to the yaxis and disk Balong a path which intersects the x axis at a distance b=7.5 m from O. B C yo B B' x Determine the velocities of A and B after the cord breaks. (You must provide an answer before moving on to the next part.) 3.3 After the cord breaks, the velocity of A is After the cord breaks, the velocity of Bis 5.13 m/s↑. m/s € 45.4arrow_forward
- (II) Billiard ball A of mass ma = 0.120 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg. As a result of the collision, ball A is deflected off at an angle of 30.0° with a speed vA = 2.10 m/s. (a) Taking the x axis to be the original direction of motion of ball A, write down the equations expressing the conservation of momentum for the compo- nents in the x and y directions separately. (b) Solve these equations for the speed, vg, and angle, 0g , of ball B after the collision. Do not assume the collision is elastic.arrow_forwardPlease solve (a),(b) and (c)arrow_forwardA bowler sends his ball down the lane with a forward velocity of 10 ft/s and backspin of 12 rad/s. His ball weighs 16 lbs and has a diameter of 10 in. Knowing that a bowling ball has more weight concentrated towards the center, we will estimate the mass moment of inertia as: I = mr². Starting from t, at the moment the ball hits the alley, and knowing the coefficient of friction is 0.10, determine: (a) The time t, when the ball starts to roll forward without sliding (b) The speed of the ball at this time (c) The distance the ball has traveled at this time 00 Voarrow_forward
- A truck with four wheels, each 750 mm diameter, travels on rails round a curve of 75 m at a speed of 50 km/h. The total mass of the truck is 5 t and its centre of gravity is midway between the axles, 1.05 m above the rails and midway between them. Each pair of wheels is driven by a motor rotating in the opposite direction to the wheels and at four times the speed. The moment of inertia of each pair of wheels is 15 Kgm2. The rails lie on a horizontal plane and 1.45 m apart. Determine the load on each rail.arrow_forwardA 0.45 kg tetherball is attached to a pole and rotating in a horizontal circle of radius r₁ = 1.4 m and is circling at angular speed = 1.42 rad/s. As the rope wraps around the pole the radius of the circle shortens and became r2 = 0.9 m, that decreases the moment of inertia of the rotating tetherball. What is the moment of inertia of the rotating ball after the rope is wrapped around the pole measured in kgm2 (answer with 3 decimal places)?arrow_forwardJourney through the Center of the Earth. A 1024-kg blue ball is dropped from an initial z-position of 2.3 x 106 m through the center of a planet with radius 7.6 x 106 m. If the mass of the planet is 33.9 x 1015 kg, measure the displacement of the ball at time t = 9 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY