VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18.1, Problem 18.52P
To determine

The kinetic energy (U) lost when plate hits the obstruction at B.

Expert Solution & Answer
Check Mark

Answer to Problem 18.52P

The kinetic energy (U) lost when plate hits the obstruction at B is 7192ma2ω02_.

Explanation of Solution

Given information:

The mass of the square plate is m.

The side of a square plate is a.

The angular velocity (ω) is ω0j

Assume the impact to be perfectly plastic that is e=0.

Calculation:

Draw the diagram of the system as in Figure (1).

<x-custom-btb-me data-me-id='1725' class='microExplainerHighlight'>VECTOR</x-custom-btb-me> MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 18.1, Problem 18.52P , additional homework tip  1

The length of the diagonal of a square is obtained by multiplying the side with 2.

Write the expression for the angular velocity in the x axis (ωx) as follows:

ωx=22ω0

Here, ω0 is the initial angular velocity.

Write the expression for the angular velocity in the y axis (ωy) as follows:

ωy=22ω0

The unit vectors along the x and y axis are represented by i and j.

Write the expression for the initial angular momentum about the mass center (HG)0 as follows:

(HG)0=I¯xωxi+I¯yωyj (1)

Here, (HG)0 is the initial angular momentum about the mass center, I¯x is the moment of inertia in the x direction and I¯y is the moment of inertia in the y direction.

Write the expression for the moment of inertia in the x direction (I¯x) as follows:

I¯x=112ma2

Here, m is the mass and a is the side of the square plate.

Due to symmetry, moment of inertia in the x and y axes are the same.

Write the expression for the angular momentum about z axis (I¯z) as follows:

I¯z=112ma2

Substitute 112ma2 for I¯x, 112ma2 for I¯y, 22ω0 for ωx, and 22ω0 for ωy in Equation (1).

(HG)0=(112ma2)(22ω0)i+(112ma2)(22ω0)j=1242ma2ω0i+1242ma2ω0j (2)

Calculate the angular velocity at B (vB) using the formula:

vB=ω×rB/A

Here, ω is the angular velocity of the rotating plate and rB/A is the distance of B with respect to A.

Substitute ωxi+ωyj+ωzk for ω and aj for rB/A.

vB=(ωxi+ωyj+ωzk)×(aj)

The matrix multiplication for vector product is done.

vB=a(ωzi+ωxk)

The corner B does not rebound after impact. Therefore, the velocity of B after impact in the z axis (vB)z is zero. The angular velocity in the x axis (ωx) is also zero.

Calculate the angular velocity about the mass center (v¯) using the formula:

v¯=ω×rG/A

Here, rG/A is the distance of mass center with respect to A.

Substitute ωxi+ωyj+ωzk for ω and 12a(ij) for rG/A.

v¯=(ωxi+ωyj+ωzk)×12a(ij)

Substitute 0 for ωx.

v¯=(ωyj+ωzk)×12a(ij)

Write the matrix multiplication for vector product is done.

v¯=12a(ωziωzj+ωyk) (3)

Write the expression for the angular momentum about A as follows:

HA=HG+rG/A×mv¯ (4)

Here, HA is the angular momentum about A and HG is the angular momentum about the mass center.

Calculate the angular momentum about G using the formula:

HG=I¯xωxi+I¯yωyj+I¯zωzk

Substitute 0 for ωx, 112ma2 for I¯y, and 16ma2 for I¯z.

HG=(112ma2)ωyj+(16ma2)ωzk (5)

Substitute (112ma2)ωyj+(16ma2)ωzk for HG, 12a(ij) for rG/A, and 12a(ωziωzjωyk) for v¯ in Equation (4).

HA=[(112ma2)ωyj+(16ma2)ωzk+[12a(ij)×m12a(ωziωzjωyk)]]

The matrix multiplication is done for vector product.

HA=[(112ma2)ωyj+(16ma2)ωzk+14ma2(ωyi+ωyj+2ωzk)]=[14ma2ωyi+112ma2ωyj+14ma2ωyj+16ma2ωzk+12ma2ωzk]=14ma2ωyi+13ma2ωyj+23ma2ωzk (6)

The initial velocity of mass center (v¯0) is zero.

Calculate the initial momentum about A using the relation:

(HA)0=(HG)0+rG/A×mv¯0

Here, (HA)0 is the angular momentum of the mass center before impact.

Substitute 1242ma2ω0i+1242ma2ω0j for (HG)0, 12a(ij) for rG/A, and 0 for v¯0.

(HA)0=1242ma2ω0i+1242ma2ω0j+12a(ij)×0=1242ma2ω0i+1242ma2ω0j (7)

Draw the forces acting on the plate as in Figure (2).

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 18.1, Problem 18.52P , additional homework tip  2

Write the expression for the moment about A as follows:

(HA)0+(aj)×(FΔt)k=HA

The matrix multiplication for vector product is done.

(HA)0(aFΔt)i=HA

Substitute Equation (6) and Equation (7).

[1242ma2ω0i+1242ma2ω0j(aFΔt)i]=[14ma2ωyi+13ma2ωyj+23ma2ωzk] (8)

Equate i components from Equation (8).

1242ma2ω0(aFΔt)=14ma2ωy (9)

Equate j components from Equation (8).

1242ma2ω0=13ma2ωyωy=3242ma2ω0ma2ωy=182ω0

Equate k components from Equation (8).

0=23ma2ωzωz=0

Calculate the velocity along the x, y and z axes (v¯) using the formula:

v¯=12a(ωziωzj+ωyk)

Substitute 0 for ωz.

v¯=12a((0)i(0)jωyk)=12aωyk

Substitute 182ω0 for ωy.

v¯=12a(182ω0)k=1162aω0k

Calculate the kinetic energy of the system before impact (T0) using the formula:

T0=12mv¯0+12I¯xωx2+12I¯yωy2+12I¯zωz2

Substitute 0 for v¯0, 182ω0 for ωy, 0 for ωz, 0 for ωx, 112ma2 for I¯y, and 112ma2 for I¯x.

T0=0+12(112ma2)(22ω0)2+0+12(112ma2)(22ω0)2+0=148ma2ω02+148ma2ω02=124ma2ω02

Calculate the kinetic energy of the system after impact (T1) using the formula:

T1=12mv¯+12I¯xωx2+12I¯yωy2+12I¯zωz2

Substitute 1162aω0 for v¯, 28ω0 for ωy, 0 for ωz, 0 for ωx, 112ma2 for I¯y, and 112ma2 for I¯x.

T0=12m(1162aω0)2+0+12(112ma2)(28ω0)2+0=ma2ω02(1256+1768)=ma2ω02(4768)=1192ma2ω02

Calculate the loss in kinetic energy (U) using the formula:

U=T0T1

Substitute 124ma2ω02 for T0 and 1192ma2ω02 for T1.

U=124ma2ω021192ma2ω02=81192ma2ω02=7192ma2ω02

Thus, the kinetic energy (U) lost when plate hits the obstruction at B is 7192ma2ω02_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scores
Consider a large 6-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 × 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. Determine the value of the highest and lowest temperature. The highest temperature is The lowest temperature is °C. °C.
Sketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel engine   please, please explain into detail the difference bewteen the two and referance the a diagram. Please include a sketch or an image of each diagram

Chapter 18 Solutions

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS

Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY