VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18.1, Problem 18.43P
Determine the kinetic energy of the disk of Prob. 18.5.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Each of the gears A and B has a mass of 675 g and a radius of gyration of 40 mm, while gear C has a mass of 3.6 kg and a radius of gyration of 100 mm. Assume that kinetic friction in the bearings of gears A, B C produces couples of constant magnitude 0.15 N.m, 0.15 N.m, 0.3 N.m, respectively. Knowing that the initial angular velocity of gear C is 2000 rpm, determine the time required for the system to come to rest.
A solid rectangular parallelepiped of mass m has a square base of side a and a length 2a. Knowing that it rotates at the constant rate v about its diagonal AC’ and that its rotation is observed from A as counterclockwise, determine (a) the magnitude of the angular momentum HG of the parallelepiped about its mass center G, (b) the angle that HG forms with the diagonal AC’.
None
Chapter 18 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
Ch. 18.1 - Prob. 18.1PCh. 18.1 - Prob. 18.2PCh. 18.1 - Prob. 18.3PCh. 18.1 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Solve Prob. 18.6, assuming that the solid...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10P
Ch. 18.1 - Prob. 18.11PCh. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Prob. 18.14PCh. 18.1 - Prob. 18.15PCh. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.19PCh. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - Prob. 18.29PCh. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Prob. 18.32PCh. 18.1 - Prob. 18.33PCh. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.35PCh. 18.1 - Prob. 18.36PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Prob. 18.44PCh. 18.1 - Prob. 18.45PCh. 18.1 - Prob. 18.46PCh. 18.1 - Prob. 18.47PCh. 18.1 - Prob. 18.48PCh. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Prob. 18.51PCh. 18.1 - Prob. 18.52PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.1 - Prob. 18.54PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Prob. 18.60PCh. 18.2 - Prob. 18.61PCh. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - A thin, homogeneous triangular plate of weight 10...Ch. 18.2 - Prob. 18.67PCh. 18.2 - Prob. 18.68PCh. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Prob. 18.72PCh. 18.2 - Prob. 18.73PCh. 18.2 - Prob. 18.74PCh. 18.2 - Prob. 18.75PCh. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.77PCh. 18.2 - Prob. 18.78PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - Prob. 18.83PCh. 18.2 - Prob. 18.84PCh. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - Prob. 18.88PCh. 18.2 - Prob. 18.89PCh. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - Prob. 18.92PCh. 18.2 - The 10-oz disk shown spins at the rate 1=750 rpm,...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Prob. 18.96PCh. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - Prob. 18.99PCh. 18.2 - Prob. 18.100PCh. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - Prob. 18.103PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.2 - Prob. 18.106PCh. 18.3 - Prob. 18.107PCh. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - Prob. 18.110PCh. 18.3 - Prob. 18.111PCh. 18.3 - A solid cone of height 9 in. with a circular base...Ch. 18.3 - Prob. 18.113PCh. 18.3 - Prob. 18.114PCh. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Show that for an axisymmetric body under no force,...Ch. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - Prob. 18.124PCh. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - An 800-lb geostationary satellite is spinning with...Ch. 18.3 - Solve Prob. 18.129, assuming that the meteorite...Ch. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - Prob. 18.136PCh. 18.3 - Prob. 18.137PCh. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Prob. 18.143PCh. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18.3 - Prob. 18.146PCh. 18 - Prob. 18.147RPCh. 18 - Prob. 18.148RPCh. 18 - A rod of uniform cross-section is used to form the...Ch. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - Prob. 18.156RPCh. 18 - Prob. 18.157RPCh. 18 - Prob. 18.158RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 17.43 The rotor of an electric motor has a weight of 70 lb and a radius of gyration of 10 in. It is observed that 5.3 min is required for the rotor to coast to rest from an angular velocity of 3600 rpm. Determine the average magnitude of the couple due to kinetic friction in the bearings of the rotor.arrow_forwardA disk with mass m and radius R is released from rest at a height h and rolls without slipping down a ramp. What is the velocity of the center of the disk when it reaches the bottom of the slope? (Hint Use the work-energy principle. At each instant the disk rotates around the contact point C, thus the inertia used for rotatonal kinetic energy should be computed around point C not point G.) m C harrow_forwardi need the answer quicklyarrow_forward
- The rotor of an electric motor has an angular velocity of 3600 rpm when the load and power are cut off. The 110-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that the kinetic friction of the rotor produces a couple with a magnitude of 2.5 1b.ft determine the number of revolutions that the rotor executes before coming to rest.arrow_forwardA thin homogeneous square plate of mass m and side a is welded to a vertical shaft AB with which it forms an angle of 45°. Knowing that the shaft rotates with a constant angular velocity o, determine the angular momentum HẠ of the plate about point A. 45° A Вarrow_forwardThe rotor of an electric motor has an angular velocity of 3600 rpm when the load and power are cut off. The 120-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that kinetic friction results in a couple of magnitude 2.5 lb·ft exerted on the rotor, determine the number of revolutions that the rotor executes before coming to rest.arrow_forward
- The rotor of an electric motor has an angular velocity of 3520 rpm when the load and power are cut off. The 110-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that the kinetic friction of the rotor produces a couple of magnitude 2.5 lb-ft, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest is rev.arrow_forwardThe rotor of an electric motor has an angular velocity of 3600 rpm when the load and power are cut off. The 121-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that kinetic friction results in a couple of magnitude 2.5 lb-ft exerted on the rotor, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest isarrow_forwardFast .arrow_forward
- A 240-lb block is suspended from an inextensible cable which is wrapped around a drum of 1.25-ft radius rigidly attached to a flywheel. The drum and flywheel have a combined centroidal moment of intertia of 10.5 lb-ft-s^2. At the instant shown, the velocity of the block is 6 ft/s directed downward. The bearing at A as a frictional moment of 60 lb-ft. What is the kinetic energy of the system after the block moved after 4ft? (in ft-lb)arrow_forward16.105 A half section of a uniform thin pipe of mass m is at rest when a force P is applied as shown. Assuming that the section rolls without slid- ing, determine (a) its initial angular acceleration, (b) the minimum value of the coefficient of static friction consistent with the motion. Solve Prob. 16.105 assuming that the force P applied at point 아들아들어 16.106 A is directed horizontally to the right. Fig. P16.105 Go Aarrow_forwardTwo disks of the same material are attached to a shaft as shown. Disk A has a radius r and a thickness 2b, while disk B has a radius nr and a thickness 2b. A couple M with a constant magnitude is applied when the system is at rest and is removed after the system has executed two revolutions. Determine the value of n that results in the largest final speed for a point on the rim of disk B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Work, Energy, and Power: Crash Course Physics #9; Author: CrashCourse;https://www.youtube.com/watch?v=w4QFJb9a8vo;License: Standard YouTube License, CC-BY
Different Forms Of Energy | Physics; Author: Manocha Academy;https://www.youtube.com/watch?v=XiNx7YBnM-s;License: Standard Youtube License