PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 7RP
To determine
The velocity of the collar when the rod becomes horizontal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 10-kg rod AB shown is confined so that its ends move in the horizontal andvertical slots. The spring has a stiffness of k = 800N/m and is unstretched when θ = 0˚.Determine the angular velocity of AB when θ = 0˚, if the rod is released from rest when θ = 30˚.Neglect the mass of the slider blocks. It’s frictionless.
The flat circular disk rotates about a vertical axis through O with a slowly increasing angular velocity w. Prior to rotation, each of the
0.52-kg sliding blocks has the position x = 28 mm with no force in its attached spring. Each spring has a stiffness of 430 N/m.
Determine the value of x for each spring for a steady speed of 279 rev/min. Also calculate the normal force N exerted by the side of the
slot on the block. The force N is positive if it pushes from the side labeled A. Neglect any friction between the blocks and the slots, and
neglect the mass of the springs. (Hint: Sum forces along and normal to the slot.)
Answers:
X =
wwwwwwww
N =
i
i
-74-74-
mm
mm
mm
N
The slotted arm OB rotates in a horizontal plane about point O of the fixed circular cam with constant angular velocity 0 = 10rad/s.
The spring has a stiffness of 6.4 kN/m and is uncompressed when 80. The smooth roller A has a mass of 0.36 kg. Determine the
normal force N which the cam exerts on A and also the force R exerted on A by the sides of the slot when 8 52°. The force R is positive
if contact is with the lower surface. All surfaces are smooth. Neglect the small diameter of the roller.
Answers:
N=
R=
0.19
m
0.19
m
B
278.166820949951087 N
N
Chapter 18 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 18 - The 80-kg wheel has a radius of gyration about its...Ch. 18 - The uniform 50-lb slender rod is subjected to a...Ch. 18 - The uniform 50-kg slender rod is at rest m the...Ch. 18 - The 50-kg wheel is subjected to a force of 50 N....Ch. 18 - If the uniform 30-kg slender rod starts from rest...Ch. 18 - The 20-kg wheel has a radius of gyration about its...Ch. 18 - At a given instant the body of mass m has an...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - The double pulley consists of two parts that are...
Ch. 18 - The double pulley cons1sts of two parts that are...Ch. 18 - Prob. 9PCh. 18 - The 10-kg uniform slender rod is suspended at rest...Ch. 18 - Prob. 14PCh. 18 - The pendulum consists of a 10-kg uniform disk and...Ch. 18 - The center O of the thin ring of mass m is given...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 27PCh. 18 - The 10-kg rod AB is pin connected at A and...Ch. 18 - Motor M exerts a constant force of P = 750 Non the...Ch. 18 - The two 2-kg gears A and B are attached to the...Ch. 18 - F187. If the 30-kg disk is released from rest when...Ch. 18 - The 50-kg reel has a radius of gyration about its...Ch. 18 - The 60-kg rod OA is released from rest when = 0....Ch. 18 - Prob. 10FPCh. 18 - The 30-kg rod is released from rest when = 45....Ch. 18 - Prob. 12FPCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - The 40-kg wheel has a radius of gyration about its...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - If the 250-lb block is released from rest when the...Ch. 18 - The slender 15-kg bar is initially at rest and...Ch. 18 - The 50-lb wheel has a radius of gyration about its...Ch. 18 - The system consists of 60-lb and 20-lb blocks A...Ch. 18 - The pendulum of the Charpy impact machine has a...Ch. 18 - Prob. 2RPCh. 18 - The drum has a mass of 50 kg and a radius of...Ch. 18 - The spool has a mass of 60 Kg and a radius of...Ch. 18 - Prob. 5RPCh. 18 - At the Instant shown, the 50-lb bar rotates...Ch. 18 - Prob. 7RPCh. 18 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A homogeneous 150-kg vertical bar AB is raised from rest at θ = 0° by means of the parallel swinging bars of negligible weight, with a constant moment M = 5 kN-m applied to the lower link at C. Determine the angular velocity and the angular acceleration of the links and the forces at A and B at the instantθ = X°. Take the angle θ = 37°.arrow_forwardAt the instant shown both rods of negligible mass swing with a counterclockwise angular velocity of w = while the 50-kg bar is subjected to the 100-N horizontal force. Determine the tension developed in the rods and the angular acceleration of the rods at this instant. 5 rad/s,arrow_forward3. A yo-yo has a weight of 0.3 lb and a radius of gyration ko = 0.06 ft. If it is released from rest, determine how far it must descend in order to attain an angular velocity @ = 70 rad/s. neglect the mass of the string and assume that the string is wound around the central peg such that the mean radius at which it unravels is r = 0.02 ft.arrow_forward
- The 1.2-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in the horizontal position 0 = 0 where the spring is unstretched. If the bar is observed to momentarily stop in the position 0 = 50° determine the spring constant k. For your computed value of k, what is the angular velocity of the bar when 0 = 35°? 0.6 m 0.6 m 1.2 kg 0.2 m wwwarrow_forwardThe 2.15-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in the horizontal positione = 0 where the spring is unstretched. If the bar is observed to momentarily stop in the position e = 46?, determine the spring constant k. For your computed value of k, what is magnitude of the angular velocity of the bar when e = 12°. 0.63 m 0.63 m 2.15 kg 0.22 m Answers: k = N/m rad/sarrow_forwardThe small block B is attached to the vertex A of the right circular cone using a light cord. The cone is rotating at a constant angular velocity about the vertical z-axis such that the block attains a speed of 0.6 m/sec. If the mass of the block is 0.3 kg, determine the tension in the cord by neglecting friction and the size of the block. Present your answer in Newtons using 3 significant figures. 200 mm B 300 mm A 400 mmarrow_forward
- The small end rollers of the 8-lb uniform slender bar (length = 4 ft) are constrained to move in the slots, which lie in the verticalplane. At the instant when θ = 30°, the velocity of roller A is 14 ft/s down the vertical slot. Determine the angular acceleration of the bar, the acceleration of mass center G, and the reactions of points A and B, under the action of the 6-lb force P. Neglect the friction and the mass of the small rollers.arrow_forwardPlease help with the attached problemarrow_forwardThe uniform 179-kg beam is freely hinged about its upper end A and is initially at rest in the vertical position with θ = 0. Determine the initial angular acceleration α (positive if counterclockwise, negative if clockwise) of the beam and the magnitude F_A of the force supported by the pin at A due to the application of a force P = 635 N on the attached cable.arrow_forward
- The elevator E and its freight have a total weight of 869.4 lb. Hoisting is provided by the motor M and the counterweight C which weighs 128.8 lb. At the instant shown, the elevator is moving upward with a velocity of 15 ft/s and an upward acceleration of 4 ft's?. Hint: draw a free-body diagram of the counterweight and then of the elevator. • Determine the tension in the counterweight cable. Determine the tension in the motor cable. Determine the power output of the motor.arrow_forwardThe 2.28-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in the horizontal position 0 = 0 where the spring is unstretched. If the bar is observed to momentarily stop in the position 0 = 66°, determine the spring constant k. For your computed value of k, what is magnitude of the angular velocity of the bar when 0 = 48°. B 0.85 m 0.85 m 2.28 kg 0.29 my Answers: k = i N/m ω- rad/s 1arrow_forwardThe 100-kg spool is resting on the inclined surface for which the coefficient of kinetic friction is μk = 0.11. The radius of gyration about the mass center is kG = 0.26 m Determine the angular velocity of the spool, measured clockwise, when t = 7 s after it is released from rest.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License