PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 3FP
The uniform 50-kg slender rod is at rest m the position shown when P = 600 N is applied. Determine the angular velocity of the rod when the rod reaches the vertical position.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 27-kg wheel has a radius of gyration about its center O of ko = 260 mm, and
radius r = 0.5 m. When the wheel is subjected to the constant force F = 354 N,
applied to the wheel's center axle at an angle = 6°, it starts rolling from rest.
Determine the wheel's angular velocity W (in rad/s) after 3.2 seconds if the wheel
has been rolling without slipping. Please pay attention: the numbers may change
since they are randomized. Your answer must include 1 place after the decimal point.
Take g = 9.81 m/s².
F
0
Your Answer:
Answer
0.4 m
The 8-kg crank OA, with mass center at G and radius of gyration about O of 0.22 m, is connected to
the 12-kg uniform slender bar AB. A constant torque M is applied to OA so that when OA swings
through the vertical position, the speed of B is 8 m/s. Determine the magnitude of the torque M and
the angular velocity of OA when it reaches the vertical position.
G
0.18 m
M =
1.0 m
The 10 kg wheel has a radius of gyration about its center
O of ko = 300 mm. When the wheel is subjected to the
couple moment, it slips as it rolls. Determine the angular
acceleration of the wheel and the acceleration of the
wheel's center O. The coefficient of kinetic friction
between the wheel and the plane is = 0.2. (Figure 1)
Figure
M 100 N m
< 1 of 1
0.4 m
Part A
Determine the angular acceleration of the wheel.
Express your answer to three significant figures and include the appropriate units.
α =
Submit
■
Part B
ao =
μÅ
X Incorrect; Try Again
Value
Submit
Previous Answers Request Answer
Determine the acceleration of the wheel's center O.
Express your answer to three significant figures and include the appropriate units.
μA
Units
Value
X Incorrect; Try Again
Units
?
Previous Answers Request Answer
?
Units input for part B
Chapter 18 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 18 - The 80-kg wheel has a radius of gyration about its...Ch. 18 - The uniform 50-lb slender rod is subjected to a...Ch. 18 - The uniform 50-kg slender rod is at rest m the...Ch. 18 - The 50-kg wheel is subjected to a force of 50 N....Ch. 18 - If the uniform 30-kg slender rod starts from rest...Ch. 18 - The 20-kg wheel has a radius of gyration about its...Ch. 18 - At a given instant the body of mass m has an...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - The double pulley consists of two parts that are...
Ch. 18 - The double pulley cons1sts of two parts that are...Ch. 18 - Prob. 9PCh. 18 - The 10-kg uniform slender rod is suspended at rest...Ch. 18 - Prob. 14PCh. 18 - The pendulum consists of a 10-kg uniform disk and...Ch. 18 - The center O of the thin ring of mass m is given...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 27PCh. 18 - The 10-kg rod AB is pin connected at A and...Ch. 18 - Motor M exerts a constant force of P = 750 Non the...Ch. 18 - The two 2-kg gears A and B are attached to the...Ch. 18 - F187. If the 30-kg disk is released from rest when...Ch. 18 - The 50-kg reel has a radius of gyration about its...Ch. 18 - The 60-kg rod OA is released from rest when = 0....Ch. 18 - Prob. 10FPCh. 18 - The 30-kg rod is released from rest when = 45....Ch. 18 - Prob. 12FPCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - The 40-kg wheel has a radius of gyration about its...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - If the 250-lb block is released from rest when the...Ch. 18 - The slender 15-kg bar is initially at rest and...Ch. 18 - The 50-lb wheel has a radius of gyration about its...Ch. 18 - The system consists of 60-lb and 20-lb blocks A...Ch. 18 - The pendulum of the Charpy impact machine has a...Ch. 18 - Prob. 2RPCh. 18 - The drum has a mass of 50 kg and a radius of...Ch. 18 - The spool has a mass of 60 Kg and a radius of...Ch. 18 - Prob. 5RPCh. 18 - At the Instant shown, the 50-lb bar rotates...Ch. 18 - Prob. 7RPCh. 18 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 20-kg wheel has a radius of gyration about its center O of ko = 280 mm, and radius r = 0.5 m. When the wheel is subjected to the constant force F= 388 N, applied to the wheel's center axle at an angle = 11°, it starts rolling from rest. Determine the total angular impulse L (in N.m.s) about the wheel's /C after 5.5 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². F Ө Your Answer: Answerarrow_forwardThe 20-kg wheel has a radius of gyration about its center O of ko = 300mm as shown in Fig.5. When the wheel is subjected to the couple moment, it slips as it rolls. Determine the angular acceleration of the wheel and the acceleration of the wheel's mass center O. The coefficient of kinetic friction between the wheel and the plane is ur = 0.5. 0.4 m M = 100 N-marrow_forwardf cion A force of P = 20 N is applied to the cable, which causes a 175 kg of radius of Gyration KG = 0.42m reel to turn without slipping on the 2 rollers A and B of each 18 kg and radius of 0.1m. P 30° 250 mm OG 500 mm AO OB -400 mm- Calculate the work done by the 20N for 2 revolutions. (J) Determine the angular velocity of the reel after it has rotated 2 revolutions starting from rest. (rad/s) Calculate the Kinetic energy of roller A after the reel rotated 2 revolutions starting from rest. (J) Choose... 7.952 1.88 32.2 3.14 1.98 16.34 20 3.66 62.831 Choose... Choose... Choose... 52 8:44 AM MMarrow_forward
- The 250-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 64 N.m, it starts rolling from rest. Determine the total angular impulse L (in N.m.s) about the wheel's IC after 7.3 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². M Your Answer: Answerarrow_forwardEach of the two links has a mass of 2 kg and a centroidal radius of gyration of 60mm. The slider at B has a mass of 3 kg and moves freely in the vertical guide. The springhas a stiffness of 6 kN/m. If a constant torque M = 20 N∙m is applied to link OA throughits shaft at O starting from the rest position at θ = 45°, determine the angular velocity ofOA when θ = 0.arrow_forwardThe slender L-shaped bar ABCD mass 15 kg/m is free to rotate about thepin at B. The spring connected to the bar at A has a free length of 7 ft, and itsstiffness is 180 N/m. If the system is released from rest in the position shown,determine the angular velocity of the bar when A is directly above B.arrow_forward
- The 30-kg wheel has a radius of gyration about its center O of ko = 240 mm, and radius r = 0.5 m. When the wheel is subjected to the constant force F = 388 N, applied to the wheel's center axle at an angle = 6°, it starts rolling from rest. Determine the total angular impulse L (in N•m.s) about the wheel's IC after 3.7 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². Your Answer: G Answer Ө Farrow_forwardQuestion 4: Where G = 8, F = 10, and H = 8arrow_forwardThe 213-kg wheel has a radius of gyration about its center O of ko = 240 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 85 N·m, it starts rolling from rest. Determine the wheel's angular velocity W (in rad/s) after 4.4 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answerarrow_forward
- The 31-kg reel is mounted on the 16-kg cart. Part A: If the cable wrapped around the inner hub of the reel is subjected to a force of P=50N, determine the velocity of the cart when t = 4.2 s. The radius of gyration of the reel about its center of mass O is kO=250mm. Neglect the size of the small wheels. Part B: Determine the angular velocity of the reel when t = 4.2 s.arrow_forward4 The uniform 16.1-lb slender bar is hinged about a horizontal axis through O and released from rest in the horizontal position. Determine the distance b from the mass center to O which will result in an ini- tial angular acceleration of 16.1 rad/sec?, and find the force R on the bar at O just after release. G 12" 12"arrow_forwardThe 153-kg wheel has a radius of gyration about its center of mass O of kO = 283 mm. If it rotates counterclockwise at an angular speed of 1431 rev/min and the tension force applied to the braking band at A is TA = 1771N,a) Determine the angular acceleration, in rad/s2, so that the wheel comes to rest in 67.6 revolutions after TA and TB are applied.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY