PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 30P
Motor M exerts a constant force of P = 750 Non the rope. If the 100-kg post is at rest when θ = 0°, determine the angular velocity of the post at the instant θ = 60°. Neglect the mass of the pulley and its size, and consider the post as a slender rod.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The vertical bar AB has a mass of 150 kg with center of mass G midway between the ends. The bar is elevated from rest at θ = 0 by means of the parallel links of negligible mass, with a constant couple M = 5 kN∙m applied to the lower link at C. Determine the angular acceleration α of the links as a function of θ and find the force B in the link DB at the instant when θ = 30°.
3. The 300-kg gear has a radius of gyration about its center of mass O of ko = 400 mm. If the wheel
is subjected to a couple moment of M= 300 N-m, determine its angular velocity 6 s after it starts
from rest and no slipping occurs. Also determine the friction force that the ground applies to the
wheel. Solve the problem using Impulse and Momentum.
M 300 Nm
0.6 m
The 10-kg uniform slender rod is suspended at rest when the force of F = 150 N is applied to its end. Determine the angular velocity of the rod when it has rotated 180° clockwise from the position shown. The force is always perpendicular to the rod.
Chapter 18 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 18 - The 80-kg wheel has a radius of gyration about its...Ch. 18 - The uniform 50-lb slender rod is subjected to a...Ch. 18 - The uniform 50-kg slender rod is at rest m the...Ch. 18 - The 50-kg wheel is subjected to a force of 50 N....Ch. 18 - If the uniform 30-kg slender rod starts from rest...Ch. 18 - The 20-kg wheel has a radius of gyration about its...Ch. 18 - At a given instant the body of mass m has an...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - The double pulley consists of two parts that are...
Ch. 18 - The double pulley cons1sts of two parts that are...Ch. 18 - Prob. 9PCh. 18 - The 10-kg uniform slender rod is suspended at rest...Ch. 18 - Prob. 14PCh. 18 - The pendulum consists of a 10-kg uniform disk and...Ch. 18 - The center O of the thin ring of mass m is given...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 27PCh. 18 - The 10-kg rod AB is pin connected at A and...Ch. 18 - Motor M exerts a constant force of P = 750 Non the...Ch. 18 - The two 2-kg gears A and B are attached to the...Ch. 18 - F187. If the 30-kg disk is released from rest when...Ch. 18 - The 50-kg reel has a radius of gyration about its...Ch. 18 - The 60-kg rod OA is released from rest when = 0....Ch. 18 - Prob. 10FPCh. 18 - The 30-kg rod is released from rest when = 45....Ch. 18 - Prob. 12FPCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - The 40-kg wheel has a radius of gyration about its...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - If the 250-lb block is released from rest when the...Ch. 18 - The slender 15-kg bar is initially at rest and...Ch. 18 - The 50-lb wheel has a radius of gyration about its...Ch. 18 - The system consists of 60-lb and 20-lb blocks A...Ch. 18 - The pendulum of the Charpy impact machine has a...Ch. 18 - Prob. 2RPCh. 18 - The drum has a mass of 50 kg and a radius of...Ch. 18 - The spool has a mass of 60 Kg and a radius of...Ch. 18 - Prob. 5RPCh. 18 - At the Instant shown, the 50-lb bar rotates...Ch. 18 - Prob. 7RPCh. 18 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The pendulum has a mass of 7.2 kg, a centre of gravity at G, and a radius of gyration of 0.31 m about the fixed pin support at O. The pendulum is released from rest in the position where 0 = 43 •. What is the magnitude of the pendulum's angular acceleration (in rad/s?) at this instant? Take = OG = 0.24 m. The motion occurs in a vertical plane and friction is negligible. f = OG Garrow_forwardThe 28-kg wheel has a radius of gyration about its center O of ko = 220 mm, and radius r = 0.4 m. When the wheel is subjected to the couple moment M = 63 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s²). The coefficient of kinetic friction between the wheel and the plane is μ = 0.47. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answer 1arrow_forwardThe slender 12-kg bar has a clockwise angular velocity of w = 2 radis when it is in the position shown. Determine its angular acceleration and the normal reactions of the smooth surface A and B at this instant. 3 marrow_forward
- The 50-kg wheel has a radius of gyration about its center of gravity G of kG = 300mm. If it rolls without slipping, determine its angular velocity when it has rotated clockwise 90° from the position shown. The spring AB has a stiffness k = 200 N/m and an unstretched length of 400 mm. The wheel is released from rest.arrow_forwardThe 12-kg slender rod is pinned to a small roller that slides freely in the slot. If the rod is released from rest with θ = 0o , determine the angular acceleration of the rod and the linear acceleration of the center of mass immediately after release.arrow_forwardThe uniform 80 kg slender rod is at rest in the position shown when P = 450 N is applied. Determine the value of angular velocity, w2 the rod if L1 = 5.5 m and L2 = 6.5 m. A L L2 L1 Barrow_forward
- winding drum that operates the elevator. If the elevator has a mass of 900 kg, the counterweight C has a mass of 200 kg, and sam the winding drum has a mass of 600 kg and radius of gyration about its axis of k = 0,6 m, determine the speed of the elevator after it rises 5 m starting from rest. Neglect the mass of the pulleysarrow_forward3. The 30-kg gear A has a radius of gyration about its center of mass O of ko = 125 mm. If the 20-kg gear rack B is subjected to a force of P = 200 N, determine the time required for the gear to obtain an angular velocity of 20 rad/s, starting from rest. The contact between the gear rack and the horizontal plane is smooth. 0.15 m ru P = 200 Narrow_forwardThe 10-kg rod AB shown is confined so that its ends move in the horizontal andvertical slots. The spring has a stiffness of k = 800N/m and is unstretched when θ = 0˚.Determine the angular velocity of AB when θ = 0˚, if the rod is released from rest when θ = 30˚.Neglect the mass of the slider blocks. It’s frictionless.arrow_forward
- The 3.8 kg block is descending at a rate of 1.2 m/s when the hydraulic cylinder BC exerts a force F=500 N on the brake arm. Determine the number of radians the wheel will rotate before the system comes to rest. The wheel has a mass of 25 kg and a radius of gyration about its center kO=300 mm. The coefficient of kinetic friction between the brake arm and the wheel is 0.25.arrow_forwardThe cylinder is at rest supported by the spring of stiffness 205 N/m when a torque of 78 Nm is applied as shown. The mass of the cylinder is 2.5 kg and its radius is 205 mm. If the wheel rolls without slipping, find the velocity of the centre of the wheel when it has moved a distance 352 mm up the slope with the angle ẞ= 25°.arrow_forward3. The uniform bar has a mass m and length 7. If it is released from rest when 0 = 0°, determine its angular velocity as a function of the angle before it slips. 3 23arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License