PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 9FP
The 60-kg rod OA is released from rest when θ = 0°. Determine its angular velocity when θ = 45°.The spring remains vertical during the motion and is unstretched when θ = 0°.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 10-kg uniform slender rod is suspended at rest when the force of F = 150 N is applied to its end. Determine the angular velocity of the rod when it has rotated 180° clockwise from the position shown. The force is always perpendicular to the rod.
A force of P = 60 N is applied to the cable, which causes
the 200-kg reel to turn since it is resting on the two rollers
A and B of the dispenser. Determine the angular velocity of
the reel after it has made two revolutions starting from rest.
Neglect the mass of the rollers and the mass of the cable.
Assume the radius of gyration of the reel about its center
axis remains constant at k, = 0.6 m.
The 25-1b slender rod AB is attached to
spring BC which has an unstretched length of 4 ft. If the
rod is released from rest when 6-30°, determine its
angular velocity at the instant = 90°.
k-5 lb/ft
4 ft
Chapter 18 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 18 - The 80-kg wheel has a radius of gyration about its...Ch. 18 - The uniform 50-lb slender rod is subjected to a...Ch. 18 - The uniform 50-kg slender rod is at rest m the...Ch. 18 - The 50-kg wheel is subjected to a force of 50 N....Ch. 18 - If the uniform 30-kg slender rod starts from rest...Ch. 18 - The 20-kg wheel has a radius of gyration about its...Ch. 18 - At a given instant the body of mass m has an...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - The double pulley consists of two parts that are...
Ch. 18 - The double pulley cons1sts of two parts that are...Ch. 18 - Prob. 9PCh. 18 - The 10-kg uniform slender rod is suspended at rest...Ch. 18 - Prob. 14PCh. 18 - The pendulum consists of a 10-kg uniform disk and...Ch. 18 - The center O of the thin ring of mass m is given...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 27PCh. 18 - The 10-kg rod AB is pin connected at A and...Ch. 18 - Motor M exerts a constant force of P = 750 Non the...Ch. 18 - The two 2-kg gears A and B are attached to the...Ch. 18 - F187. If the 30-kg disk is released from rest when...Ch. 18 - The 50-kg reel has a radius of gyration about its...Ch. 18 - The 60-kg rod OA is released from rest when = 0....Ch. 18 - Prob. 10FPCh. 18 - The 30-kg rod is released from rest when = 45....Ch. 18 - Prob. 12FPCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - The 40-kg wheel has a radius of gyration about its...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - If the 250-lb block is released from rest when the...Ch. 18 - The slender 15-kg bar is initially at rest and...Ch. 18 - The 50-lb wheel has a radius of gyration about its...Ch. 18 - The system consists of 60-lb and 20-lb blocks A...Ch. 18 - The pendulum of the Charpy impact machine has a...Ch. 18 - Prob. 2RPCh. 18 - The drum has a mass of 50 kg and a radius of...Ch. 18 - The spool has a mass of 60 Kg and a radius of...Ch. 18 - Prob. 5RPCh. 18 - At the Instant shown, the 50-lb bar rotates...Ch. 18 - Prob. 7RPCh. 18 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The vertical bar AB has a mass of 150 kg with center of mass G midway between the ends. The bar is elevated from rest at θ = 0 by means of the parallel links of negligible mass, with a constant couple M = 5 kN∙m applied to the lower link at C. Determine the angular acceleration α of the links as a function of θ and find the force B in the link DB at the instant when θ = 30°.arrow_forwardThe 10-kg rod AB shown is confined so that its ends move in the horizontal andvertical slots. The spring has a stiffness of k = 800N/m and is unstretched when θ = 0˚.Determine the angular velocity of AB when θ = 0˚, if the rod is released from rest when θ = 30˚.Neglect the mass of the slider blocks. It’s frictionless.arrow_forward3. The 300-kg gear has a radius of gyration about its center of mass O of ko = 400 mm. If the wheel is subjected to a couple moment of M= 300 N-m, determine its angular velocity 6 s after it starts from rest and no slipping occurs. Also determine the friction force that the ground applies to the wheel. Solve the problem using Impulse and Momentum. M 300 Nm 0.6 marrow_forward
- The uniform 80 kg slender rod is at rest in the position shown when P = 450 N is applied. Determine the value of angular velocity, w2 the rod if L1 = 5.5 m and L2 = 6.5 m. A L L2 L1 Barrow_forwardThe 12-kg slender rod is pinned to a small roller that slides freely in the slot. If the rod is released from rest with θ = 0o , determine the angular acceleration of the rod and the linear acceleration of the center of mass immediately after release.arrow_forwardThe assembly consists of two 10-kg bars which are pin connected. If the bars are released from rest when 0 = 60°, determine their angular velocities at the instant 0 = 30°. The 5-kg disk at C has a radius of 0.5 m and rolls without slipping. A 3 m B 3 m Carrow_forward
- 3. The 30-kg gear A has a radius of gyration about its center of mass O of ko = 125 mm. If the 20-kg gear rack B is subjected to a force of P = 200 N, determine the time required for the gear to obtain an angular velocity of 20 rad/s, starting from rest. The contact between the gear rack and the horizontal plane is smooth. 0.15 m ru P = 200 Narrow_forwardIn the figure, rod AB has a mass of 10 kg, and must slide within the slots as shown. If the spring is unstretched when θ = 0°, determine the angular velocity of the bar when it reaches that angle after being released from θ = 30°.arrow_forwardTwo wheels of negligible weight are mounted at corners 4 and B of the rectangular 50-lb plate. If the plate is released from rest at 0= 60°, determine its angular velocity at the instant just before 6 30°.arrow_forward
- The 30 kg rod is released from rest when theta =0°. The spring is unstretched when theta = 0°. Find the angular velocity of the rod when theta = 30° and length of stretched spring is 1 m.arrow_forward18-6. A force of P=20 N is applied to the cable, which causes the 175-kg reel to turn without slipping on the two rollers A and B of the dispenser. Determine the angular velocity of the reel after it has made two revolutions starting from rest. Neglect the mass of the cable. Each roller can be considered as an 18-kg cylinder, having a radius of 0.1 m. The radius of gyration of the reel about its center axis is kg=0.42 m. 307 250 mm OG 500 mm 400 mm-arrow_forwardThe torsional spring is untwisted when the slender uniform rod is in the vertical position. The rod has a length of 0.81 m and a mass of 4.7 kg. The rod is released from rest in the horizontal position shown. What should the stiffness Kof the spring be so that the rod will have an angular speed of o = 4 rad/s when it passes the vertical position? The rod rotates freely about the fixed pin support at O. The motion occurs in a vertical plane. Choose the correct answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY