PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 8FP
The 50-kg reel has a radius of gyration about its center O of kO = 300 mm. If it is released from rest, determine its angular velocity when its center O has traveled 6 m down the smooth inclined plane.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please whats the true option of these parts of wues
Combustion gases from the exhaust of a boiler that come out at 300 °C and 1 atm, are usedto preheat to preheat water in an industrial facility by passing them through a benchof tubes, within which there is a mass flow of liquid water of 6 kg/s. TemperatureThe average wall surface of all pipes is 80°C. Gases enter the bank ofPerpendicular shaped tubes with a velocity of 4.5 m/s. The outer diameter of the tubes isof 2.1 cm, which are arranged in a manner aligned with longitudinal and transverse steps ofSL = ST = 8 cm. There are 16 columns in the direction of flow with eight tubes in each.Whereas exhaust gases have properties very similar to atmospheric air,Calculate the following:a) The average coefficient of heat transfer by convection, in [W/m2K]. (b) The amount of heat transferred per unit length of the tubes, in [W/m] c) The pressure drop through the tube bank, in [kPa]
During a visit to a plastic sheet factory, it is observed that a section of 45 mlength of a steam pipe, with a nominal diameter of 2 inches (6.03 cm in diameter)Outdoor plant) extends from one end of the plant to the other without any insulation. TheTemperature measurements at various points on the tube surface gave an average value170 °C, while the surrounding air temperature is 20 °C. The outer surfaceof the pipe is oxidized and its emissivity is 0.7 on average with a temperature of thearound 22 °C. Calculate the following:(a) The coefficient of convective heat transfer for the air surrounding the pipe.b) The amount of heat lost by convection and radiationc) The amount of energy that is lost in a full day, assuming conditions ofconstant temperature.
Chapter 18 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 18 - The 80-kg wheel has a radius of gyration about its...Ch. 18 - The uniform 50-lb slender rod is subjected to a...Ch. 18 - The uniform 50-kg slender rod is at rest m the...Ch. 18 - The 50-kg wheel is subjected to a force of 50 N....Ch. 18 - If the uniform 30-kg slender rod starts from rest...Ch. 18 - The 20-kg wheel has a radius of gyration about its...Ch. 18 - At a given instant the body of mass m has an...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - A force of P = 20 N is applied to the cable, which...Ch. 18 - The double pulley consists of two parts that are...
Ch. 18 - The double pulley cons1sts of two parts that are...Ch. 18 - Prob. 9PCh. 18 - The 10-kg uniform slender rod is suspended at rest...Ch. 18 - Prob. 14PCh. 18 - The pendulum consists of a 10-kg uniform disk and...Ch. 18 - The center O of the thin ring of mass m is given...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 27PCh. 18 - The 10-kg rod AB is pin connected at A and...Ch. 18 - Motor M exerts a constant force of P = 750 Non the...Ch. 18 - The two 2-kg gears A and B are attached to the...Ch. 18 - F187. If the 30-kg disk is released from rest when...Ch. 18 - The 50-kg reel has a radius of gyration about its...Ch. 18 - The 60-kg rod OA is released from rest when = 0....Ch. 18 - Prob. 10FPCh. 18 - The 30-kg rod is released from rest when = 45....Ch. 18 - Prob. 12FPCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - The 40-kg wheel has a radius of gyration about its...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - The assembly consists of two 10-kg bars which are...Ch. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - If the 250-lb block is released from rest when the...Ch. 18 - The slender 15-kg bar is initially at rest and...Ch. 18 - The 50-lb wheel has a radius of gyration about its...Ch. 18 - The system consists of 60-lb and 20-lb blocks A...Ch. 18 - The pendulum of the Charpy impact machine has a...Ch. 18 - Prob. 2RPCh. 18 - The drum has a mass of 50 kg and a radius of...Ch. 18 - The spool has a mass of 60 Kg and a radius of...Ch. 18 - Prob. 5RPCh. 18 - At the Instant shown, the 50-lb bar rotates...Ch. 18 - Prob. 7RPCh. 18 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Hi, wondering could I get an explanation for this question. (Out of a reeds book) looking for clarification on the friction angle and how to calculate it, and also why the angle is 90 minus friction angle plus inclined angle. if your want to include a new means of these calculations or a better breakdown that is fine too. Thanksarrow_forwardQ1: For the Diesel cycle (constant pressure cycle) shown in figure above show that: - 1 17th = 1- ρ (-)-1 [1] -1)] Where (n) is the thermal efficiency of the Diesel cycle. (y) is the adiabatic index. (r) is the compression ratio. (p) Is the cut-off ratio. عماد داود عبودarrow_forwardNB: Answer fully and show all working out. In the system shown in Figure 1, link OA has a constant angular velocity of 15 rad/s anticlockwise. For the position shown, determine: a) The angular velocity of rod AB. b) The angular velocity of rod BC. c) The angular acceleration of rod AB. d) The angular acceleration of rod BC. B 15° 240 mm A 80 mm 200 mm CO wo 60° ✓arrow_forward
- Q4: A Dual combustion cycle has an adiabatic compression volume ratio of (15:1). The conditions at the commencement of compression are (1 bar), (25 °C) and (0.1 m³) The maximum pressure of the cycle is (65 bar) and the maximum temperature of the cycle is (1500 °C).If C₁ = 0.718 Kj/Kg.K and y = 1.4, calculate the pressure, volume and Temperature at the corners of the cycle and the thermal efficiency of the cycle. Volume, (m³) Temperature, (K) 0.1 298 0.0066 880 0.0066 1290.8 0.009 1773 1 عماد داود عبود 677 Answers Pressure, (KN/m²) Point 1 100 Point 2 4431.26 Point 3 6500 Point 4 6500 Point 5 223arrow_forwarding Design 8-7 Problem 8-7 485 / 1109 157% A screw clamp similar to the one shown in the figure has a handle with diameter in made of cold-drawn AISI 1006 steel. The overall length is 4.25 in. The screw is in-10 UNC and is 8 in long, overall. Distance A is 3 in. The clamp will accommodate parts up to 6 in high. (a) What screw torque will cause the handle to bend permanently? (b) What clamping force will the answer to part (a) cause if the collar friction is neglected and if the thread friction is 0.15? (c) What clamping force will cause the screw to buckle? (d) Are there any other stresses or possible failures to be checked? ट Activate Windows Go to Settings to activat Windows. ENG 8:58 PMarrow_forwardA billet 75mm long and 25mm in diameter is to be extruded in a direct extrusion operation with extrusion ratio re= 4.0 .The extrudate has a round cross section, the die angle (half angle )is 90 degree .The work metal has a strength coefficient of 415 Mpa, and strain hardening exponent of 0.18. Use the Johnson formular with a= 0.8 and b=1.5 to estimate extrusion strain. Find the Pressuer applied to the end of the billet as the ram moves forward.arrow_forward
- 14- effect of different carburizing treatments on the microstructure and mechanical properties of a case produced by carburizing. 5-surface film between two surfaces is one of the main factors affecting wear.arrow_forward2. Consider a polymeric membrane within a 6 cm diameter stirred ultrafiltration cell. The membrane is 30 μm thick. The membrane has pores equivalent in size to a spherical molecule with a molecular weight of 100,000, a porosity of 80%, and a tortuosity of 2.5. On the feed side of the membrane, we have a solution containing a protein at a concentration of 8 g L-1 with these properties: a = 3 nm and DAB = 6.0 × 10-7 cm² s¹. The solution viscosity is 1 cP. The hydrodynamic pressure on the protein side of the membrane is 20 pounds per square inch (psi) higher than on the filtrate side of the membrane. Assume that the hydrodynamic pressure difference is much larger than the osmotic pressure difference (advection >> diffusion). Determine the convective flow rate of the solution across the membrane.arrow_forward1. Calculate the filtration flow rate (cm³ s¹) of a pure fluid across a 100 cm² membrane. Assume the viscosity (µ) of the fluid is 1.8 cP. The porosity of the membrane is 40% and the thickness of the membrane is 500 μm. The pores run straight through the membrane and these pores have a radius of 0.225 μm. The pressure drop applied across the membrane is 75 psi. (Note: 1 cP = 0.001 N s m²² = 0.001 Pa s.)arrow_forward
- 3. Tong and Anderson (1996) obtained for BSA the following data in a polyacrylamide gel for the partition coefficient (K) as a function of the gel volume fraction (4). The BSA they used had a molecular weight of 67,000, a molecular radius of 3.6 nm, and a diffusivity of 6 × 10-7 cm2 s-1. Compare the Ogston equation K=exp + to their data and obtain an estimate for the radius of the cylindrical fibers (af) that comprise the gel. Hint: You will need to plot Ink as a function of gel volume fraction as part of your analysis. Please include your MATLAB, or other, code with your solution. Gel Volume Fraction (4) KBSA 0.00 1.0 0.025 0.35 0.05 0.09 0.06 0.05 0.075 0.017 0.085 0.02 0.105 0.03arrow_forwardAssignment 10, Question 1, Problem Book #189 Problem Statement An ideal Brayton cycle operates with no reheat, intercooling, or regeneration. The com- pressor inlet conditions are 30°C and 1 bar. The compression ratio is 11. The turbine inlet temperature is 1,300 K. Determine the turbine exit temperature, the thermal efficiency, and the back work ratio. Use an air standard analysis. Answer Table Correct Stage Description Your Answer Answer * 1 Compressor inlet enthalpy (kJ/kg) Due Date Grade (%) Weight Attempt Action/Message Part Type 1 2 1 Compressor inlet relative pressure 1 Compressor exit relative pressure 1 Compressor exit enthalpy (kJ/kg) Compressor work (kJ/kg) Turbine inlet enthalpy (kJ/kg) Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 0.0 1 1/5 Submit Stage 1 0.0 1 1 Dec 5, 2024 11:59 pm 0.0 1 Dec 5, 2024 11:59 pm 0.0 1 2 Turbine inlet relative pressure Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 1 1/5 0.0 1 2 Combustion chamber heat addition (kJ/kg) Dec…arrow_forwardAssignment 10, Question 4, Problem Book #202 Problem Statement An ideal Brayton cycle with a two-stage compressor, a two-stage turbine, and a regenerator operates with a mass flow rate of 25 kg/s. The regenerator cold inlet is at 490 K and its effectiveness is 60%. Ambient conditions are 90 kPa and 20°C. The intercooler operates at 450 kPa and the reheater operates at 550 kPa. The temperature at the exit of the combustion chamber is 1,400 K. Heat is removed in the intercooler at a rate of 2.5 MW and heat is added in the reheater at a rate of 10 MW. Determine the thermal efficiency and the back work ratio. Use a cold air standard analysis with cp = 1.005 kJ/(kg K) and k = 1.4. . Answer Table Stage Description Your Answer Correct Answer Due Date Grade (%) 1 Thermal efficiency (%) Dec 5, 2024 11:59 pm 0.0 1 Weight Attempt Action/Message 1/5 Part Type Submit 1 Back work ratio (%) Dec 5, 2024 11:59 pm 0.0 1 * Correct answers will only show after due date has passed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY