One scheme for reducing greenhouse-gas emissions from coal-fired power plants calls for capturing carbon dioxide and pumping it into the deep ocean, where the pressure is at least 350 atm. You’re called to assess the energy cost of such a scheme for a power plant that produces electrical energy at the rate of 1.0 GW while at the same time emitting CO2 at the rate of 1100 tonnes/hour. If CO2 is extracted from the plant’s smokestack at 320 K and 1 atm pressure and then compressed adiabatically to 350 atm, what fraction of the plant’s power output would be needed for the compression? Take γ = 1.3 for CO2. (Your answer is a rough estimate because CO2 doesn’t behave like an ideal gas at very high pressures; also, it doesn’t include the energy cost of separating the CO2 from other stack gases or of transporting it to the compression site.)
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
College Physics: A Strategic Approach (4th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Lecture- Tutorials for Introductory Astronomy
An Introduction to Thermal Physics
Essential University Physics: Volume 2 (3rd Edition)
- The average electricity consumption of a house in Gainesville is known to be 1,036 kWh in a month (One month = 30 days). They would like to install solar panels of 30 % efficiency to generate this electricity. Given that the average solar power density in Gainesville is 5.47 kWh/m2/day, how much surface area must the panels occupy? Calculate the result in m² but do not write the unit. Round off you E swer to a whole number (zero decimal place.)arrow_forwardThe temperature in the deep interiors of some giant molecular clouds in the Milky Way galaxy is 50 K. Compare the amount of energy that would have to be transferred to this environment to the amount that would have to be transferred to a room temperature environment to bring about a 7.7 J/K increase in the entropy of the universe in each case. ΔEroom temp/ ΔEMilky Way =arrow_forwardA certain nuclear power plant has an electrical power output of 435 MW. The rate at which energy must be supplied to the plant is 1420 MW. (a) What is the thermal efficiency of the power plant? (b) At what rate is thermal energy expelled by the plant?arrow_forward
- Consider two actual power plants operating with solar energy. Energy is supplied to one plant from a solar pond at 80°C and to the other from concentrating collectors that raise the water temperature to 600°C. Which of these power plants will have a higher efficiency? Explain.arrow_forwardIn rural housing, the source of water is obtained through groundwater pumped up. Assume that the groundwater source is 60 m deep from the surface. Water will be lifted as far as 5 m above ground level by pump. The inlet diameter of the pipe is 10 cm and the outlet is 15 cm. Ignoring the interaction of heat with the environment and heat due to friction, determine the input work (Watts) required by the pump so that the water flows steadily at a rate of 15 liters/s. (The density of water is 1000 kg/m^3).arrow_forwardA nuclear power plant has a power output (i.e. output to do useful work) of 1505 MW and operates at an efficiency of 21.1%. The excess energy is carried away by a river which has a flow rate of 1.15e+6kg/s. What is the rise in temperature (C) of the river downstream?arrow_forward
- A woman expends 95 kJ of energy in walking a kilometer. The energy is supplied by the metabolic breakdown of food intake and has a 35 percent efficiency. If the woman drives a car over the same distance, how much energy is used if the car gets 8.8 km per liter of gasoline (approximately 20 mi/gal)? The density of gasoline is 0.71 g/mL, and its enthalpy of combustion is 49 kJ/g. Enter your answer in scientific notation. Compare the efficiencies of the two processes. kJ (driving)/ kJ (walking)arrow_forward6-25E Solar energy stored in large bodies of water, called solar pounds, is being used to generate electricity. If such a solar power plant has an efficiency of 3 percent and a net power output of 180 kW, determine the average value of the required solar energy collection rate, in Btu/h.arrow_forwardA prototype power generation device that cycles steam between a geothermal source (temperature 393 K) and a cooling tower (temperature 280 K) has a theoretical maximum efficiency ofarrow_forward
- The bulldozer for the DPWH road widening project at Koronadal City has a gasoline engine that takes 10,000 J of heat and delivers 2,200 J of mechanical work per cycle. (a) What is the thermal efficiency of this engine? (b) How much heat is discarded in each cycle?arrow_forwardYou are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a heat engine that would operate between 20.0°C (surfacewater temperature) and 5.00°C (water temperature at a depth of about 1 km). (a) Your supervisor asks you to determine the maximum efficiency of such a system. (b) In addition, if the electric power output of the plant is 75.0 MW and it operates at the maximum theoretically possible efficiency, you must determine the rate at which energy is taken in from the warm reservoir. (c) From this information, if an electric bill for a typical home shows a use of 950 kWh per month, your supervisor wants to know how many homes can be provided with power from this energy system operating at its maximum efficiency. (d) As energy is drawn from the warm surface water to operate the engine, it is replaced by energy…arrow_forwardA newly proposed device for generating electricity from the sun is a heat engine in which the hot reservoir is created by focusing sunlight on a small spot on one side of the engine. The cold reservoir is ambient air at 20°C. The designer claims that the efficiency will be 60%. What minimum hot-reservoirtemperature, in °C, would be required to produce this efficiency?arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning