Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 74P
A real gas is more accurately described using the van der Waals equation: [p + a(n/V)2](V − nb) = nRT, where a and b are constants. Find an expression, corresponding to Equation 18.4, for the work done by a van der Waals gas undergoing an isothermal expansion from V1 to V2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A bottle of volume V = 0.15 m³ contains helium gas (a monatomic gas) at a pressure p = 722,266 Pa (Pascal = N/m² and temperature T = 300 K.
Calculate a numerical value for the internal energy U of this gas.
Include units in your answer, using Sl units (m for meters, kg for kilograms, s for seconds, J for joules, K for kelvin, etc.).
Write your answer as an exponential as described in the instructions.
1.50 moles of a monatomic ideal gas goes isothermally from state 1 to state 2. P1 = 2.8×105 Pa, V1 = 88 m3, and P2 = 6.6×105 Pa. What is the volume in state 2, in m3?
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.
A monatomic ideal gas undergoes an isothermal expansion at 300 K, as the
volume increased from 0.020 to [2*v1] m³.The final pressure is 120.61kPa. The
ideal gas constant is R = 8.314 J/mol · K.
%3D
What is the heat transfer Q to the gas in kilojoules? Please enter your numerical
answer with two decimal places. (for example for 2090 J, enter 2.09 )
Chapter 18 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 18.2 - Two identical gas-cylinder systems are taken from...Ch. 18.2 - Name the basic thermodynamic process involved when...Ch. 18.3 - The same amount of heat flows into equal volumes...Ch. 18 - Prob. 1FTDCh. 18 - Prob. 2FTDCh. 18 - Prob. 3FTDCh. 18 - Why cant an irreversible process be described by a...Ch. 18 - Are the initial and final equilibrium states of an...Ch. 18 - Does the first law of thermodynamics apply to...Ch. 18 - Prob. 7FTD
Ch. 18 - Figure 18.18 shows two processes, A and B. that...Ch. 18 - When you let air out of a tire, the air seems...Ch. 18 - Blow on the back of your hand with your mouth wide...Ch. 18 - You boil water in an open pan. Of which of the...Ch. 18 - Three identical gas-cylinder systems are...Ch. 18 - Prob. 13FTDCh. 18 - In what sense can a gas of diatomic molecules be...Ch. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - A 40-W heat source is applied to a gas sample for...Ch. 18 - Find the rate of heat flow into a system whose...Ch. 18 - In a certain automobile engine, 17% of the total...Ch. 18 - An ideal gas expands from the state (p1, V1) to...Ch. 18 - Repeat Exercise 20 for a process that follows the...Ch. 18 - A balloon contains 0.30 mol of helium. It rises,...Ch. 18 - The balloon of Exercise 22 starts at 100 kPa...Ch. 18 - How much work does it take to compress 2.5 mol of...Ch. 18 - By what factor must the volume of a gas with =...Ch. 18 - Prob. 26ECh. 18 - A carbon-sequestration scheme calls for...Ch. 18 - A gas mixture contains 2.5 mol of O2 and 3.0 mol...Ch. 18 - A mixture of monatomic and diatomic gases has...Ch. 18 - What should be the approximate specific-heat ratio...Ch. 18 - Prob. 31ECh. 18 - An ideal gas expands to 10 times its original...Ch. 18 - During cycling, the human body typically releases...Ch. 18 - A 0.25-mol sample of ideal gas initially occupies...Ch. 18 - As the heart beats, blood pressure in an artery...Ch. 18 - It takes 1.5 kJ to compress a gas isothermally to...Ch. 18 - A gas undergoes an adiabatic compression during...Ch. 18 - A gas with = 1.40 occupies 6.25 L when its at...Ch. 18 - A gas sample undergoes the cyclic process ABCA...Ch. 18 - Prob. 40PCh. 18 - A gasoline engine has compression ratio 8.5 (sec...Ch. 18 - By what factor must the volume of a gas with =...Ch. 18 - Volvos B5340 engine, used in the V70 series cars,...Ch. 18 - A research balloon is prepared for launch by...Ch. 18 - Prob. 45PCh. 18 - By what factor does the internal energy of an...Ch. 18 - An ideal monatomic gas is compressed to half its...Ch. 18 - A gas expands isothermally from state A to state...Ch. 18 - A 3.50-mol sample of ideal gas with molar specific...Ch. 18 - Prove that the slope of an adiabat at a given...Ch. 18 - An ideal gas with = 1.67 starts at point A in...Ch. 18 - The gas of Example 18.4 starts at state A in Fig....Ch. 18 - The gas of Example 18.4 starts at state A in Fig....Ch. 18 - A 25-L sample of ideal gas with = 1.67 is at 250...Ch. 18 - Prob. 55PCh. 18 - A 25-L sample of ideal gas with = 1.67 is at 250...Ch. 18 - Youre the product safety officer for a company...Ch. 18 - Figure 18.22 shows data and a fit curve from an...Ch. 18 - External forces compress 21 mol of ideal monatomic...Ch. 18 - A gas with = 7/5 is at 273 K when its compressed...Ch. 18 - An ideal gas with = 1.3 is initially at 273 K and...Ch. 18 - The curved path in Fig. 18.23 lies on the 350-K...Ch. 18 - Repeat part (a) of Problem 62 for the path ACDA in...Ch. 18 - A gas mixture contains monatomic argon and...Ch. 18 - How much of a triatomic gas with Cv = 3R would you...Ch. 18 - An 8.5-kg rock at 0C is dropped into a...Ch. 18 - A piston-cylinder arrangement containing 0.30 mol...Ch. 18 - Experimental studies show that the pV curve for a...Ch. 18 - Show that the application of Equation 18.3 to an...Ch. 18 - A horizontal piston-cylinder system containing n...Ch. 18 - Prob. 71PCh. 18 - The table below shows measured values of pressure...Ch. 18 - In a reversible process, a volume of air V0= 17 m3...Ch. 18 - A real gas is more accurately described using the...Ch. 18 - Repeat Exercise 20 for an expansion along the path...Ch. 18 - The adiabatic lapse rate is the rate at which air...Ch. 18 - The nuclear power plant at which youre the public...Ch. 18 - Prob. 78PCh. 18 - One scheme for reducing greenhouse-gas emissions...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Nerve cells and R - C circuits. The portion of a nerve cell that conducts signals is called an axon. Many of th...
College Physics (10th Edition)
6.86 ••• The Grand Coulee Dam is 1270 m long and 170 m high. The electrical power output from generators at its...
University Physics with Modern Physics (14th Edition)
How many sugar molecules are there in a 2M sugar solution?
Conceptual Integrated Science
12. FIGURE Q7.12 shows two masses at rest. The string is massless and the pullies are frictionless. The spring ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be ...
Modern Physics
A student has briefly connected a wire across the terminals of a battery until the wire feels warm. The student...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forwardn = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.125 m3. Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas? Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?arrow_forwardA)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.) B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.) C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)arrow_forward
- Two containers of equal volume each hold samples of the same ideal gas. Container A has 2 times as many molecules as container B. If the gas pressure is the same in the two containers, find the ratio of the the absolute temperatures TA and TB ( i.e TA / TB ) . Calculate to 2 decimals.arrow_forward1.7 Ideal gas response functions Find the thermal expansion coefficient and the isothermal compressibility for an ideal gas and show that in this case Cp - Cy = - a² can be reduced to Cp – Cy = Nkg for the molar specific heats. TV Ктarrow_forwardThe pressure P and volume V of an expanding gas are related by the formula PV^b=c, where b and c are constants (this holds in adiabatic expansion, with or without loss). Find dP/dt if b=1.5, P=7 kPa, V=110 cm^3, and dV/dt=40 cm^3/min.arrow_forward
- Suppose you have 2.86 moles of an ideal gas. What is the average kinetic energy of that gas (in units of kJ) if the temperature of the gas is 279.1K? Note: It is understood that the unit of your answer is some number of kilo-Joules, however do not explicitly include units in your answer. Enter only a number. If you do enter a unit ("kJ" in this case), you answer will be counted wrong.arrow_forwardWhat is the total internal kinetic energy of 1.30 mol of an ideal gas at 0.0°C and 1.00 atm? Universal gas constant = 8.314 J/(mol·K). (See Appendix B Table B.1.)arrow_forwarda. In the deep space between galaxies, the density of atoms is as low as 106 atoms/m³, and the temperature is a frigid 2.7 K. What is the pressure (in Pa)? 0.00000000000000003726 Pa b. What volume (in m³) is occupied by 5 mol of gas? m3 Enter an integer or decimal number more..] c. If this volume is a cube, what is the length of its sides in kilometers? kmarrow_forward
- Please explain each steparrow_forwardQuestion 2. 1.60 x 106 Pa. Find (a) the temperature of the gas and (b) the average kinetie energy of a gas molecule in the vessel. (c) If the volume is increased to 9.00 L and the temperature is kept constant, what is the new pressure (in Pa)? A 7.00-L vessel contains 3.50 moles of ideal gas at a pressure ofarrow_forwardThe pressure, volume, and temperature of a mole of an ideal gas are related by the equation PV = 8.31T, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure (in kPa) if the volume increases from 14 L to 14.3 L and the temperature decreases from 325 K to 320 K. (Note whether the change is positive or negative in your answer. Round your answer to two decimal places.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY