Concept explainers
A horizontal piston-cylinder system containing n mol of ideal gas is surrounded by air at temperature T0 and pressure p0. If the piston is displaced slightly from equilibrium, show that it executes
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Additional Science Textbook Solutions
Sears And Zemansky's University Physics With Modern Physics
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Physics for Scientists and Engineers with Modern Physics
Life in the Universe (4th Edition)
Conceptual Physics (12th Edition)
- A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forwardAn ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of 3, (d) a factor of 1, or (e) a factor of 13? Using the same choices as in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a collision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas?arrow_forward(a) Show that the density of an ideal gas occupying a volume V is given by = PM/KT, where M is the molar mass. (b) Determine the density of oxygen gas at atmospheric pressure and 20.0C.arrow_forward
- A gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forwardThe mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forwardOne cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forward
- A cylinder that has a 40.0-cm radius and is 50.0 cm deep is filled with air at 20.0C and 1.00 atm (Fig. P10.74a). A 20.0-kg piston is now lowered into the cylinder, compressing the air trapped inside as it takes equilibrium height hi (Fig. P16.74b). Finally, a 25.0-kg dog stands on the piston, further compressing the air, which remains at 20C (Fig. P16.74c). (a) How far down (h) does the piston move when the dog steps onto it? (b) To what temperature should the gas be warmed to raise the piston and dog back to hi?arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- An ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forwardConsider the Maxwell-Boltzmann distribution function plotted in Problem 28. For those parameters, determine the rms velocity and the most probable speed, as well as the values of f(v) for each of these values. Compare these values with the graph in Problem 28. 28. Plot the Maxwell-Boltzmann distribution function for a gas composed of nitrogen molecules (N2) at a temperature of 295 K. Identify the points on the curve that have a value of half the maximum value. Estimate these speeds, which represent the range of speeds most of the molecules are likely to have. The mass of a nitrogen molecule is 4.68 1026 kg. Equation 20.18 can be used to find the rms velocity given the temperature, Boltzmanns constant, and the mass of the atom or molecule. The mass of a nitrogen molecule is 4.68 1026 kg. vrms=3kBTm=3(1.381023J/K)4.681026kg=511m/s Using the results of Problem 28 and the rms velocity, we can calculate the value of f(v). f(vrms) = (3.11 108)(511)2 e(5.75106(511)2) = 0.00181 The most probable speed, for which this function has its maximum value, is given by Equation 20.20. vmp=2kBTm=2(1.381023J/K)(295K)4.681026kg=417m/s f(vmp) = (3.11108)(417)2 e(5.75106(417)2) = 0.00199 We plot these points on the speed distribution. The most probable speed is indeed at the peak of the distribution function. Since the function is not symmetric, the rms velocity is somewhat higher than the most probable speed. Figure P20.29ANSarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning