Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 30E
What should be the approximate specific-heat ratio of a gas consisting of 50% NO2 molecules (γ = 1.29), 30% O2 (γ = 1.40), and 20% Ar (γ = 1.67)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 3.
The viral coefficients of a gas at 20 °C and 11.5 bar are B = -138 cm³ mol¹ and C=7222 cmº mol².
Calculate the V (molar volume) Z (compressibility factor) of the gas. Use the equation below (R =
83.14 cm³ bar mol-¹ K-¹).
PV
2 = ² = (1 + = + =)
Z
RT
The mean free path λ and the mean collision time T of molecules of a diatomic gas with molecular mass 6.00 x10^-25 kg and radius r=1.0x10^-10m are measured.From these microscopic data we can obtain macroscopic properties such as temperature T and pressure P? If yes, consider λ=4.32x10^-8m and T=3.00x10^-10s and calculate T and P.a)It's not possible.b)Yes,T=150K and P~2.04atm.c)Yes,T=150K and P~4.08atm.d)Yes,T=300K and P~4.08atm.e)Yes,T=300K and P~5.32atmf)Yes,T=400K and P~4.08atmg)Yes,T=400K and P~5.32atm.
What is the volume of a container that holds exactly 1 mole of anideal gas at standard temperature and pressure (STP), defined asT = 0°C = 273.15 K and p = 1 atm = 1.013 * 105 Pa?
Chapter 18 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 18.2 - Two identical gas-cylinder systems are taken from...Ch. 18.2 - Name the basic thermodynamic process involved when...Ch. 18.3 - The same amount of heat flows into equal volumes...Ch. 18 - Prob. 1FTDCh. 18 - Prob. 2FTDCh. 18 - Prob. 3FTDCh. 18 - Why cant an irreversible process be described by a...Ch. 18 - Are the initial and final equilibrium states of an...Ch. 18 - Does the first law of thermodynamics apply to...Ch. 18 - Prob. 7FTD
Ch. 18 - Figure 18.18 shows two processes, A and B. that...Ch. 18 - When you let air out of a tire, the air seems...Ch. 18 - Blow on the back of your hand with your mouth wide...Ch. 18 - You boil water in an open pan. Of which of the...Ch. 18 - Three identical gas-cylinder systems are...Ch. 18 - Prob. 13FTDCh. 18 - In what sense can a gas of diatomic molecules be...Ch. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - A 40-W heat source is applied to a gas sample for...Ch. 18 - Find the rate of heat flow into a system whose...Ch. 18 - In a certain automobile engine, 17% of the total...Ch. 18 - An ideal gas expands from the state (p1, V1) to...Ch. 18 - Repeat Exercise 20 for a process that follows the...Ch. 18 - A balloon contains 0.30 mol of helium. It rises,...Ch. 18 - The balloon of Exercise 22 starts at 100 kPa...Ch. 18 - How much work does it take to compress 2.5 mol of...Ch. 18 - By what factor must the volume of a gas with =...Ch. 18 - Prob. 26ECh. 18 - A carbon-sequestration scheme calls for...Ch. 18 - A gas mixture contains 2.5 mol of O2 and 3.0 mol...Ch. 18 - A mixture of monatomic and diatomic gases has...Ch. 18 - What should be the approximate specific-heat ratio...Ch. 18 - Prob. 31ECh. 18 - An ideal gas expands to 10 times its original...Ch. 18 - During cycling, the human body typically releases...Ch. 18 - A 0.25-mol sample of ideal gas initially occupies...Ch. 18 - As the heart beats, blood pressure in an artery...Ch. 18 - It takes 1.5 kJ to compress a gas isothermally to...Ch. 18 - A gas undergoes an adiabatic compression during...Ch. 18 - A gas with = 1.40 occupies 6.25 L when its at...Ch. 18 - A gas sample undergoes the cyclic process ABCA...Ch. 18 - Prob. 40PCh. 18 - A gasoline engine has compression ratio 8.5 (sec...Ch. 18 - By what factor must the volume of a gas with =...Ch. 18 - Volvos B5340 engine, used in the V70 series cars,...Ch. 18 - A research balloon is prepared for launch by...Ch. 18 - Prob. 45PCh. 18 - By what factor does the internal energy of an...Ch. 18 - An ideal monatomic gas is compressed to half its...Ch. 18 - A gas expands isothermally from state A to state...Ch. 18 - A 3.50-mol sample of ideal gas with molar specific...Ch. 18 - Prove that the slope of an adiabat at a given...Ch. 18 - An ideal gas with = 1.67 starts at point A in...Ch. 18 - The gas of Example 18.4 starts at state A in Fig....Ch. 18 - The gas of Example 18.4 starts at state A in Fig....Ch. 18 - A 25-L sample of ideal gas with = 1.67 is at 250...Ch. 18 - Prob. 55PCh. 18 - A 25-L sample of ideal gas with = 1.67 is at 250...Ch. 18 - Youre the product safety officer for a company...Ch. 18 - Figure 18.22 shows data and a fit curve from an...Ch. 18 - External forces compress 21 mol of ideal monatomic...Ch. 18 - A gas with = 7/5 is at 273 K when its compressed...Ch. 18 - An ideal gas with = 1.3 is initially at 273 K and...Ch. 18 - The curved path in Fig. 18.23 lies on the 350-K...Ch. 18 - Repeat part (a) of Problem 62 for the path ACDA in...Ch. 18 - A gas mixture contains monatomic argon and...Ch. 18 - How much of a triatomic gas with Cv = 3R would you...Ch. 18 - An 8.5-kg rock at 0C is dropped into a...Ch. 18 - A piston-cylinder arrangement containing 0.30 mol...Ch. 18 - Experimental studies show that the pV curve for a...Ch. 18 - Show that the application of Equation 18.3 to an...Ch. 18 - A horizontal piston-cylinder system containing n...Ch. 18 - Prob. 71PCh. 18 - The table below shows measured values of pressure...Ch. 18 - In a reversible process, a volume of air V0= 17 m3...Ch. 18 - A real gas is more accurately described using the...Ch. 18 - Repeat Exercise 20 for an expansion along the path...Ch. 18 - The adiabatic lapse rate is the rate at which air...Ch. 18 - The nuclear power plant at which youre the public...Ch. 18 - Prob. 78PCh. 18 - One scheme for reducing greenhouse-gas emissions...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...
Additional Science Textbook Solutions
Find more solutions based on key concepts
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Earth’s oceans formed (a) during the late stages of accretion as water ice collected on the surface; (b) from w...
Life in the Universe (4th Edition)
4. Laser eye surgery. The distance from the vertex of the cornea to the retina for a certain nearsighted person...
College Physics (10th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
6.48 An ingenious bricklayer builds a device for shooting bricks up to the top of the wall where he is working....
University Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forwardFor any gas, C C. - (+7), (7), Suppose you have one mole of a gas that obeys the equation of state, p(v- b) = represents the volume taken up by the molecules in the system, and 3.5 bars and T = 425 K for your gas sample. Hint: Use the equation of state to evaluate the partial derivatives. =RT, where b is the molar volume. Find the value of A if C-C₁=AR when P = 6arrow_forward
- A)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.) B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.) C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)arrow_forward2 mol of an ideal monoatomic gas moves from State 1 to State 2 P at constant pressure 1000 Pa and size V1=2 m3,V2 =3 m3. Calculated value W, Q, AU, TI, T2 P Solution: Va V2 P A.arrow_forwardA 2.00 x 10-3 m3 of Oxygen gas (O2) has an initial temperature and pressure of 200 K at 1 atm (101,300 Pa). The gas undergoes four processes: AB: Heated at constant V to 400 K. BC: Heated at constant P to 800 K. CD: Cooled at constant V back to 1 atm (101,300 Pa) DA: Cooled at constant P back to 200 K How many moles of O2are present? What is the pressure(in Pascals) at point B? Find Q, U and W for process AB.arrow_forward
- One mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen ? (Take the size of hydrogen molecule to be about 1 Å). Why is this ratio so large ?arrow_forward2 mol of an ideal monoatomic gas moves from State 1 to State 2 P at constant pressure 1000 Pa and size V1=2 m3,V2 =3 m3. Calculated value W, Q, U, TI, T2arrow_forwardProblem 1: Consider the two-sided chamber shown,where the right half has a volume of V = 590 L and the left half has a volume of 2V. The chamber has a seal which separates the right from the left half. The chamber is sealed and an ideal gas is pumped into the right side at a pressure P= 6.4 atm and temperature T= 78° C. The seal between the two sides is then opened. 2V V Part (a) If the physical temperature decreases by a factor of 2 while the gas fills the chamber, what is the new pressure, in kilopascals? P'= sin() cos() tan() 7 8 HOME cotan() asin() acos() 5 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() + END ODegrees O Radians Vol BACKSPACE CLEAR Submit I give up! Hint Feedback Part (b) The chamber is then sealed again, trapping 2/3 of the gas molecules in the left side. The temperature of the left side is then doubled, back to the original temperature T. What is the pressure in the left side of the chamber now, in kilopascals?arrow_forward
- A sealed 73 m tank is filled with 8000 moles of ideal oxygen gas (diatomic) at an initial temperature of 270 K. The gas is heated to a final temperature of 390 K. The atomic mass of oxygen is 16.0 g/mol. The mass density of the oxygen gas, in Sl units, is closest to: O 7.0 O 4.4 O 2.6 О 35 O 1.8arrow_forwardOne mole of oxygen gas is at a pressure of 6.85 atm and a temperature of 31.0°C. (a) If the gas is heated at constant volume until the pressure triples, what is the final temperature? (b) If the gas is heated so that both the pressure and volume are doubled, what is the final temperature?arrow_forwardTwo containers of equal volume each hold samples of the same ideal gas. Container A has 2 times as many molecules as container B. If the gas pressure is the same in the two containers, find the ratio of the the absolute temperatures TA and TB ( i.e TA / TB ) . Calculate to 2 decimals.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY