Concept explainers
Construct Your Own Problem
Consider identical spherical
Trending nowThis is a popular solution!
Chapter 18 Solutions
College Physics
Additional Science Textbook Solutions
Biological Science (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
College Physics: A Strategic Approach (3rd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
- A common demonstration involves charging a rubber balloon, which is an insulator, by rubbing it on your hair and then touching the balloon to a ceiling or wall, which is also an insulator. Because of the electrical attraction between the charged balloon and the neutral wall, the balloon sticks to the wall. Imagine now that we have two infinitely large, flat sheets of insulating material. One is charged, and the other is neutral. If these sheets are brought into contact, does an attractive force exist between them as there was for the balloon and the wall?arrow_forward(a) How strong is the attractive force between a glass rod with a 0.700 C charge and a silk cloth with a 0.600 C charge, which are 12.0 cm apart, using the approximation that they act like point charges? (b) Discuss how the answer to this problem might be affected if the charges are distributed over some area and do not act like point charges.arrow_forwardFigure 18.47 shows the electric field lines near two charges q j and g2. What is the ratio of their magnitudes? (b) Sketch the electric field lines a long distance from the charges shown in the figure.arrow_forward
- A proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forwardReview. Two insulating spheres have radii 0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg, and uniformly distributed charges 2.00 C and 3.00 C. They are released from rest when their centers are separated by 1.00 m. (a) How fast will each be moving when they collide? (b) What If? It the spheres were conductors, would the speeds be greater or less than those calculated in part (a)? Explain.arrow_forwardThere are very large numbers of charged particles in most objects. Why, then, don't most objects exhibit static electricity?arrow_forward
- (a) What is the direction and magnitude of an electric field that supports the weight of a free election near the surface of Earth? (b) Discuss what the small value for this field implies regarding the relative strength of the gravitational and electrostatic forces.arrow_forward(a) What is the direction of the total Coulomb force on q in Figure 18.46 if q is negative, qa= qcand both are negative, and qb= qcand both are positive? (b) What is the direction of the electric field at the center of the square in this situation?arrow_forward(a) Find the total Coulomb force on a charge of 2.00 nC located at x = 4.00 cm in Figure 18.52 (b): given that q = 1,00C . (b) Find the x-position at which the electric field is zero in Figure 18.52 (b).arrow_forward
- (a) By what factor must you change the distance between two point charges to change the force between them by a factor of 10? (b) Explain how the distance can either increase or decrease by this factor and still cause a factor of 10 change in the forcearrow_forwardUnreasonable results (a) Two 0.500 g raindrops in a thunderhead are 1.00 cm apart when they each acquire 1.00 mC charges. Find their acceleration. (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forwardAssume the charged objects in Figure OQ19.15 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 on charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1. Figure OQ19.15arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College