Concept explainers
(a)
The electric field at the center of the triangular configuration of charges.

Answer to Problem 23PE
Explanation of Solution
Given:
Point charges located at the corners of an equilateral triangle 25.0 cm on a side.
Formula used:
Total electric field
Calculation:
Let O be the centroid of our equilateral triangle CBA. Distance from O to any vertex is
Electric field is generally three-dimensional, but since all charges are coplanar with O, z component vanishes, so find x and y components (projections) of
Notice that
Analogously
It's tilted
Conclusion:
Thus,
(b)
The combination of charges that will give a zero-strength electric field at the center of the triangular configuration.

Answer to Problem 23PE
There is no combination of charges other than
Explanation of Solution
Given:
Point charges located at the corners of an equilateral triangle
Calculation:
Suppose
Conclusion:
There is no combination of charges other than
Want to see more full solutions like this?
Chapter 18 Solutions
College Physics
- 1 m3 of pure water is heated from 10˚C to 120˚C at a constant pressure of 1 atm. The volume of the water is contained, but allowed to expand as needed remaining at 1 atm. Calculate the change in enthalpy of the water. You are provided with the following information at the conditions of 1 atm: The density of pure water between 10˚C and 100˚C: 1000kh/m^3 The heat capacity of water: 4.18 kj/kgK Enthalpy required to convert liquid water to gas (enthalpy of vaporization): 2260 kj/kg The heat capacity of steam: 1.7kj/kgk Is the reaction endothermic or exothermic? Why?arrow_forwardWhen a dilute gas expands quasi-statically from 0.50 to 4.0 L, it does 250 J of work. Assuming that the gas temperature remains constant at 300 K. What is the change in the internal energy of the gas? How much heat is absorbed by the gas in this process?arrow_forwardA high-speed lifting mechanism supports an 881 kg object with a steel cable that is 22.0 m long and 4.00 cm^2 in cross-sectional area. Young's modulus for steel is 20.0 ⋅10^10 Pa. Determine the elongation of the cable.arrow_forward
- Namor, from Wakanda Forever, sits on a throne at the bottom of the ocean in a city called Talocan (and Atlantis in the comics). Assuming he, including his gold headdress, has a density of 1085 kg/m3 and that Namor is surrounded by salt water with a density of 1027 kg/m3, what is Namor’s normal force while sitting underwater? Take Namor’s mass as 285. kg and solve as if he has a uniform density.arrow_forwardTo get there they need to travel through an area of salt-water, which seems to also be a magical portal, before arriving in a dry area. Judging by the time Maui and Moana spend falling through the water, it seems they dive 3440. ft deep. Assume the portal is non-magical salt-water, with a density of 1027 kg/m^3. Given that the air pressure above the portal is 1.013 ⋅10^5 Pa, what is the pressure when they are 3440. ft deep? 1 m = 3.28 ft. Moana would have a surface area of 1.30 m2. How much force would be acting on her at the bottom of this portal?arrow_forwardA plank 2.00 cm thick and 15.7 cm wide is firmly attached to the railing of a ship by clamps so that the rest of the board extends 2.00 m horizontally over the sea below. A man of mass 92.9 kg is forced to stand on the very end. If the end of the board drops by 5.97 cm because of the man's weight, find the shear modulus of the wood.arrow_forward
- when considering particle B (4,1) distances in relation to P (-4, 5), why are the y coordinates being used gto resolve the distance along the x-axis and vice-versa?arrow_forwardA 198 kg load is hung on a wire of length of 3.58 m, cross-sectional area 2.00⋅ 10-5 m2, and Young's modulus 8.00⋅10^10 Pa. What is its increase in length?arrow_forwardI. Pushing on a File Cabinet Bob has been asked to push a heavy file cabinet down the hall to another office. It's not on rollers, so there is a lot of friction. At time t = 0 seconds, he starts pushing it from rest with increasing force until it starts to move at t = 2 seconds. He pushes the file cabinet down the hall with varying amounts of force. The velocity versus time graph of the cabinet is shown below. A. On the graphs provided below, 1. draw the net force vs. time that would produce this velocity graph; 2. draw the friction force vs. time for this motion; 3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph have been drawn for you). Velocity (m/s) Applied Force (N) Friction Force (N) Net Force (N) A -m B -U time (s) D time (s) time (s) time (s)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





