College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 33PE
Suppose you have a total charge qtot that you can split in any manner. Once split, the separation distance is fixed. How do you split the charge to achieve the greatest force?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) A physics lab instructor is working on a new demonstration. She attaches two identical metal spheres with mass m = 0.220 g to strings of length L as shown in the figure.
A
Ⓡ
Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 5.40°. What is L (in m)? Assume the strings are massless.
0.4985
X
Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m
(b) What If? The charge on both spheres is increased until each string makes an angle of 0 = 10.8° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case?
39.9639
X
Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nC
A 7.73 nC charge is located 1.68 m from a 3.94 nC point charge.
(a) Find the magnitude of the electrostatic force that one charge exerts on the other.
N
(b) Is the force attractive or repulsive?
O attractive
O repulsive
A small glass bead charged to 5.5 nC is in the plane that bisects a thin, uniformly charged, 10 cm-long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 740 μN
what is the rod's total charge?
Chapter 18 Solutions
College Physics
Ch. 18 - There are very large numbers of charged particles...Ch. 18 - Why do most objects tend to contain nearly equal...Ch. 18 - An eccentric inventor attempts to levitate by...Ch. 18 - If you have charged an electroscope by contact...Ch. 18 - When a glass rod is rubbed with silk, it becomes...Ch. 18 - Why does a car always attract dust right after it...Ch. 18 - Describe how a positively charged object can be...Ch. 18 - What is grounding? What effect does it have on a...Ch. 18 - Prob. 9CQCh. 18 - If the electric field lines in the figure above...
Ch. 18 - The discussion of the electric field between two...Ch. 18 - Would the self-created electric field at the end...Ch. 18 - Why is a golfer with a metal dub over her shoulder...Ch. 18 - Can the belt of aVan de Graaff accelerator he a...Ch. 18 - Are you relatively safe from lightning inside an...Ch. 18 - Discuss pros and cons of a lightning rod being...Ch. 18 - Prob. 17CQCh. 18 - Prob. 18CQCh. 18 - Prob. 19CQCh. 18 - Prob. 20CQCh. 18 - Prob. 21CQCh. 18 - In regions of low humidity, one develops a special...Ch. 18 - Tollbooth stations on roadways and bridges usually...Ch. 18 - Suppose a woman carries an excess charge. To...Ch. 18 - Prob. 25CQCh. 18 - Prob. 26CQCh. 18 - Given the polar character of water molecules,...Ch. 18 - Why must the test charge q in the definition of...Ch. 18 - Are the direction and magnitude of the Coulomb...Ch. 18 - Compare and contrast the Coulomb force field and...Ch. 18 - Prob. 31CQCh. 18 - A cell membrane is a thin layer enveloping a cell....Ch. 18 - Common static electricity involves charges ranging...Ch. 18 - If 1.801020electrons move through a pocket...Ch. 18 - To start a car engine, the car battery moves...Ch. 18 - A certain lightning bolt moves 40.0 C of charge....Ch. 18 - Suppose a speck of dust in an electrostatic...Ch. 18 - An amoeba has 1.001016protons and a net charge of...Ch. 18 - A 50.0 g ball of copper has a net charge of 2.00...Ch. 18 - What net charge would you place on a 100 g piece...Ch. 18 - How many coulombs of positive charge are there in...Ch. 18 - Prob. 10PECh. 18 - Prob. 11PECh. 18 - Prob. 12PECh. 18 - Prob. 13PECh. 18 - Prob. 14PECh. 18 - Prob. 15PECh. 18 - Prob. 16PECh. 18 - Prob. 17PECh. 18 - Prob. 18PECh. 18 - Prob. 19PECh. 18 - Prob. 20PECh. 18 - Prob. 21PECh. 18 - Prob. 22PECh. 18 - Prob. 23PECh. 18 - What is the repulsive force between two pith balls...Ch. 18 - (a) How strong is the attractive force between a...Ch. 18 - Two point charges exert a 5.00 N force on each...Ch. 18 - Two point charges are brought closer together,...Ch. 18 - How far apart must two point charges of 75.0 nC...Ch. 18 - If two equal charges each of 1 C each are...Ch. 18 - A test charge of +2C is placed halfway between a...Ch. 18 - Bare free charges do not remain stationary when...Ch. 18 - (a) By what factor must you change the distance...Ch. 18 - Suppose you have a total charge qtot that you can...Ch. 18 - (a) Common transparent tape becomes charged when...Ch. 18 - Find the ratio of the electrostatic to...Ch. 18 - At what distance is the electrostatic force...Ch. 18 - A certain five cent coin contains 5.00 g of...Ch. 18 - (a) Two point charges totaling 8.00 C exert a...Ch. 18 - Point charges of 5.00 C and 3.00/C are placed...Ch. 18 - (a) Two point charges q1 and q23.00 m apart, and...Ch. 18 - What is the magnitude and direction of an electric...Ch. 18 - What is the magnitude and direction of the force...Ch. 18 - Calculate the magnitude of the electric field 2.00...Ch. 18 - (a) What magnitude point charge creates a 10,000...Ch. 18 - Calculate the initial (from rest) acceleration of...Ch. 18 - (a) Find the direction and magnitude of an...Ch. 18 - (a) Sketch the electric field lines near a point...Ch. 18 - Prob. 48PECh. 18 - Prob. 49PECh. 18 - Prob. 50PECh. 18 - (a) What is the electric field 5.00 m from the...Ch. 18 - (a) What is the direction and magnitude of an...Ch. 18 - Prob. 53PECh. 18 - Earth has a net charge that produces an electric...Ch. 18 - Point charges of 25.0 C and 45.0 (2 are placed...Ch. 18 - What can you say about two charges q1and q2, if...Ch. 18 - Integrated Concepts Calculate the angular velocity...Ch. 18 - Integrated Concepts An electron has an initial...Ch. 18 - Integrated Concepts The practical limit to an...Ch. 18 - Integrated Concepts A 5.00 g charged insulating...Ch. 18 - Integrated Concepts Figure 18.57 shows an electron...Ch. 18 - Integrated Concepts The classic Millikan oil drop...Ch. 18 - Integrated Concepts (a) In Figure 18.59, four...Ch. 18 - Unreasonable Results 64. (a) Calculate the...Ch. 18 - Unreasonable results (a) Two 0.500 g raindrops in...Ch. 18 - Unreasonable results A wrecking yard inventor...Ch. 18 - Construct Your Own Problem Consider two insulating...Ch. 18 - Construct Your Own Problem Consider identical...Ch. 18 - Prob. 1TPCh. 18 - Prob. 2TPCh. 18 - Prob. 3TPCh. 18 - Prob. 4TPCh. 18 - Prob. 5TPCh. 18 - Prob. 6TPCh. 18 - Prob. 7TPCh. 18 - Prob. 8TPCh. 18 - Prob. 9TPCh. 18 - Prob. 10TPCh. 18 - Prob. 11TPCh. 18 - Prob. 12TPCh. 18 - Prob. 13TPCh. 18 - Prob. 14TPCh. 18 - Prob. 15TPCh. 18 - Prob. 16TPCh. 18 - Prob. 17TPCh. 18 - Prob. 18TPCh. 18 - Prob. 19TPCh. 18 - Prob. 20TPCh. 18 - Prob. 21TPCh. 18 - Prob. 22TPCh. 18 - Prob. 23TPCh. 18 - Prob. 24TPCh. 18 - Prob. 25TPCh. 18 - Prob. 26TPCh. 18 - Prob. 27TPCh. 18 - Prob. 28TPCh. 18 - Prob. 29TPCh. 18 - Prob. 30TPCh. 18 - Prob. 31TPCh. 18 - Prob. 32TPCh. 18 - Prob. 33TPCh. 18 - Prob. 34TPCh. 18 - Prob. 35TPCh. 18 - Prob. 36TPCh. 18 - Prob. 37TPCh. 18 - Prob. 38TPCh. 18 - Prob. 39TPCh. 18 - Prob. 40TPCh. 18 - Prob. 41TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
An elevator suspended by a cable is descending at constant velocity. How many force vector would be shown on ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Four equally charged particles with charge q are placed at the comers of a square with side length L, as shown in Figure P23.51. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? Figure P23.51arrow_forwardThree charged panicles are located at the corners of an equilateral triangle as shown in Figure P23.15. Calculate the total electric force on the 7.00-C charge.arrow_forwardAn object has a charge of 35 nC. How many excess protons does it have?arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in Figure P19.9. Calculate the total electric force on the 7.00-C charge.arrow_forwardThe charge unit length on the thin shown below is .What is the force on the point charge q? Solve this problem by first considering the electric force dF on q due to a small segment dx of the rod, which contains charge dx . Then, find the net force by integrating dF over the length of the rod.arrow_forwardFour charged particles q, q, q, and q are Fixed at the comers of a square with side length L as shown in Figure P23.52. If another charged particle of magnitude Q is placed at the center of the square, will it be in static equilibrium? Does the sign of the charge Q matter? Explain.arrow_forward
- A positive charge q, = 3.00 µC on a frictionless horizontal surface is attached to a spring of force constant k as in the figure shown below. When a charge of q, = -8.950 µC is placed 9.50 cm away from the positive charge, the spring stretches by 5.00 mm, reducing the distance between charges to d = 9.00 cm. Find the value of k. ww 92 N/m Need Help? Read Itarrow_forwardA small sphere of mass m carries a charge of q. It hangs from a silk thread which makes an angle θwith a large charged non-conducting sheet. Calculate the surface charge density onthe sheet.arrow_forwardTwo charges +1 μC and +13 μC are placed along the x axis, with the first charge at the origin (x = the second charge at x = +1 m. Find the magnitude and direction of the net force on a -8 nC charge 0) and when placed at the following locations below. Overall Hint a. halfway between the two charges: magnitude of force is direction is Select an answer b. on the axis at x = -0.5 m: magnitude of force is is Select an answer c. at the coordinate (x, y) = (1 m, 0.5 m) (half a meter above the +13 μC charge in a direction perpendicular to the line joining the two fixed charges): Hint for (c) Magnitude of force is degrees below -x axis. mN, and the direction is mN, and the mN, and the directionarrow_forward
- This is a physic II question. Consider two point charges located on the x axis: one charge, q1 = -18.5 nC , is located at x1 = -1.705 m ; the second charge, q2= 36.5 nCnC , is at the origin (x=0.0000). What is the net force exerted by these two charges on a third charge q3 = 51.5 nC placed between q1 and q2 at x3x3x_3 = -1.240 mm ? Your answer may be positive or negative, depending on the direction of the force. Force on q3 = ________N Please detail explanation and steps so I can understand how to solve this. Thanks!arrow_forwardSuppose charge Q is midway between two positive charges, q1 and q2. If Q = -7.5 nC, what must be the charge on q1 so that charge q2 remains stationary as Q and q1 are held in place? You must include a force diagram as part of your answer.arrow_forwardTwo charged particles, with charge q = -2q and qg = +q, are placed at xA 0.0 m and xg 1.0 m, respectively. Where on the x-axis could a positive charge Q be placed such that it experiences a net Coulomb force of zero? B хаxis XA = 0.0 m 1, = 1.0 m At a position to the right of x - +2.0 m At a position to the left of x - -1.0 m At position x = +2.0 m At position x = -1.0 m Somewhere between particles A and B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY