Unreasonable results
A wrecking yard inventor wants to pick up cars by charging a 0.400 m diameter ball and inducing an equal and opposite charge on the car. If a car has a 1000 kg mass and the ball is to be able to lift it from a distance of 1.00 m: (a) What minimum charge must be used? (b) What is the electric field near the surface of the ball? (c) Why are these results unreasonable? (d) Which premise or assumption is responsible?
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
College Physics
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology (7th Edition)
Microbiology: An Introduction
Campbell Essential Biology with Physiology (5th Edition)
- A person is placed in a large, hollow, metallic sphere that is insulated from ground, (a) If a large charge is placed on the sphere, will the person be harmed upon touching the inside of the sphere? (b) Explain what will happen if the person also has an initial charge whose sign is opposite that of the charge on the sphere.arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardEarth has a net charge that produces an electric field of approximately 150 N/C downward at its surface. (a) What is the magnitude and sign of the excess charge, noting the electric field of a conducting sphere is equivalent to a point charge at its center? (b) What acceleration will the field produce on a free electron near Earth’s surface? (c) What mass object with a single extra electron will have its weight supported by this field?arrow_forward
- Four balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forward(a) What is the electric field 5.00 m from die center of the terminal of a Van de Graaff with a 3.00-mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal? (b) At this distance, what force does the field exert on a 2.00C charge on the Van de Graaff’s belt?arrow_forwardA thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forward
- A charge of q = 2.00 109 G is spread evenly on a thin metal disk of radius 0.200 m. (a) Calculate the charge density on the disk. (b) Find the magnitude of the electric field just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge.arrow_forwardA cell membrane is a thin layer enveloping a cell. The thickness of the membrane is much less than the size of the cell. In a static situation the membrane has a charge distribution of —2.5 10-6 C/m2 on its inner surface and +2.5 106 C/m2 on its outer surface. Draw a diagram of the cell and the surrounding cell membrane. Include on this diagram the charge distribution and the corresponding electric field. Is there any electric field inside the cell? Is there any electric field outside the cell?arrow_forwardThe electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forward
- (i) A metallic sphere A of radius 1.00 cm is several centimeters away from a metallic spherical shell B of radius 2.00 cm. Charge 450 nC is placed on A, with no charge on B or anywhere nearby. Next, the two objects are joined by a long, thin, metallic wire (as shown in Fig. 25.19), and finally the wire is removed. How is the charge shared between A and B? (a) 0 on A. 450 nC on B (b) 90.0 nC on A and 360 nC on B, with equal surface charge densities (c) 150 nC on A and 300 nC on B (d) 225 nC on A and 225 nC on B (e) 450 nC on A and 0 on B (ii) A metallic sphere A of radius 1 cm with charge 450 nC hangs on an insulating thread inside an uncharged thin metallic spherical shell B of radius 2 cm. Next, A is made temporarily to touch the inner surface of B. How is the charge then shared between them? Choose from the same possibilities. Arnold Arons, the only physics teacher yet to have his picture on the cover ol Time magazine, suggested the idea for this question.arrow_forwardAssume the charged objects in Figure OQ23.10 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 an charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1.arrow_forwardParticle A of charge 3.00 104 C is at the origin, particle B of charge 6.00 101 C is at (4.00 m, 0), and particle C of charge 1.00 104 C is at (0, 3.00 in). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Kind the magnitude of the force exerted by B on C. (d) Calculate the x component of the force exerted by B on C. (e) Calculate the y component of the force exerted by B on C. (f) Sum the two x components from parts (a) and (d) to obtain the resultant x component of the electric force acting on C. (g) Similarly, find the y component of the resultant force vector acting on C. (h) Kind the magnitude and direction of the resultant electric force acting on C.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning