Starting Out With C++: Early Objects (10th Edition)
Starting Out With C++: Early Objects (10th Edition)
10th Edition
ISBN: 9780135235003
Author: Tony Gaddis, Judy Walters, Godfrey Muganda
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 3PC
Program Plan Intro

Static Queue Template

Program Plan:

Main.cpp:

  • Include required header files.
  • Inside “main ()” function,
    • Declare a constant variable
    • Declare a template
    • Manipulate and insert elements into the queue using “enqueue ()” function.
    • Delete the queue elements using “dequeue ()” function.

Queue.h:

  • Include required header files.
  • Create template class
  • Declare a class named “Queue”. Inside the class,
    • Inside the “private” access specifier,
      • Create an object for the template
      • Declare required variables.
    • Inside “public” access specifier,
      • Declare constructor and destructor.
      • Declare the functions “enqueue ()”, “dequeue ()”, “isEmpty ()”, “isFull ()”, and “clear ()”.
  • Declare template class.
  • Give definition for the constructor.
    • Allocate memory dynamically for the template.
    • Assign the values.
  • Declare template class.
  • Give definition for the destructor.
    • Delete queue array and make it as null.
  • Declare template class.
  • Give function definition for “enqueue ()”.
    • Check whether the queue is full using “isFull ()” function.
      • If the condition is true then, print “The queue is full”.
      • If the condition is not true then,
        • Calculate the “rear” position.
        • Assign “num” to the “queue_Array [rear]”.
        • Increment the variable “numItems”.
  • Declare template class.
  • Give function definition for “dequeue ()”.
    • Check if the queue is empty using “isEmpty ()” function.
      • If the condition is true then print “The queue is empty”.
      • If the condition is not true then,
        • Calculate “front” position.
        • Assign the value of “queue_Array [front]” to the variable “num”.
        • Decrement the variable “numItems”.
  • Declare template class.
  • Give function definition for “isEmpty ()”.
    • Assign “true” to a Boolean variable
    • Check if “numItems” is true.
      • If the condition is true then assign “false” to the variable.
    • Return the Boolean variable.
  • Declare template class.
  • Give function definition for “isFull ()”.
    • Assign “true” to a Boolean variable
    • Check if “numItems” is less than “size”
      • If the condition is true then assign “false” to the variable.
    • Return the Boolean variable.
  • Declare template class.
  • Give function definition for “clear ()”.
    • Decrement queue size and assign it to “front”.
    • Decrement queue size and assign it to “rear”.
    • Assign 0 to the variable “numItems”.

Blurred answer
Students have asked these similar questions
I need help to solve a simple problem using Grover’s algorithm, where the solution is not necessarily known beforehand. The problem is a 2×2 binary sudoku with two rules: • No column may contain the same value twice. • No row may contain the same value twice.   Each square in the sudoku is assigned to a variable as follows:   We want to design a quantum circuit that outputs a valid solution to this sudoku. While using Grover’s algorithm for this task is not necessarily practical, the goal is to demonstrate how classical decision problems can be converted into oracles for Grover’s algorithm.   Turning the Problem into a Circuit   To solve this, an oracle needs to be created that helps identify valid solutions. The first step is to construct a classical function within a quantum circuit that checks whether a given state satisfies the sudoku rules.   Since we need to check both columns and rows, there are four conditions to verify: v0 ≠ v1   # Check top row   v2 ≠ v3   # Check bottom row…
using r language
I need help to solve a simple problem using Grover’s algorithm, where the solution is not necessarily known beforehand. The problem is a 2×2 binary sudoku with two rules: • No column may contain the same value twice. • No row may contain the same value twice.   Each square in the sudoku is assigned to a variable as follows:   We want to design a quantum circuit that outputs a valid solution to this sudoku. While using Grover’s algorithm for this task is not necessarily practical, the goal is to demonstrate how classical decision problems can be converted into oracles for Grover’s algorithm.   Turning the Problem into a Circuit   To solve this, an oracle needs to be created that helps identify valid solutions. The first step is to construct a classical function within a quantum circuit that checks whether a given state satisfies the sudoku rules.   Since we need to check both columns and rows, there are four conditions to verify: v0 ≠ v1   # Check top row   v2 ≠ v3   # Check bottom row…
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning