
Interpretation:
The product of the reaction of propanal with the given reagents has to be stated.
Concept Introduction:
Lithium aluminum hydride and sodium borohydride are strong reducing agents. They are inorganic compounds which are used as the reducing agents in
In the reaction of
By catalytic hydrogenation, aldehydes are reduced to primary alcohols. Grignard reagents react with ketones and aldehydes to form alcohols. These reactions are nucleophilic addition reactions. The Grignard reagent adds to the carbonyl group of aldehydes and ketones due to electronegativity difference between carbon and oxygen.
An organolithium reagent acts like a good nucleophiles and strong bases. They used for the conversion of aldehydes and ketones into primary and secondary alcohols. Acetal is an organic compound with general formula

Answer to Problem 27P
Solution:
a) The product of the reaction of propanal with lithium aluminum hydride, followed by water is shown below.
b) The product of the reaction of propanal with sodium borohydride, methanol is shown below.
c) The product of the reaction of propanal with hydrogen (nickel catalyst) is shown below.
d) The product of the reaction of propanal with methylmagnesium iodide, followed by dilute acid is shown below.
e) The product of the reaction of propanal with sodium acetylide, followed by dilute acid is shown below.
f) The product of the reaction of propanal with phenyllithium, followed by dilute acid is shown below.
g) The product of the reaction of propanal with methanol containing dissolved hydrogen chloride is shown below.
h) The product of the reaction of propanal with ethylene glycol, p-toluenesulfonic acid, benzene is shown below.
i) The product of the reaction of propanal with aniline
j) The product of the reaction of propanal with dimethylamine, p-toluenesulfonic acid, benzene is shown below.
k) The product of the reaction of propanal with hydroxylamine is shown below.
l) The product of the reaction of propanal with hydrazine is shown below.
m) The product of the reaction of propanal with product of part (l) heated in triethylene glycol with sodium hydroxide is shown below.
n) The product of the reaction of propanal with p-Nitrophenylhydrazine is shown below.
o) The product of the reaction of propanal with semicarbazide is shown below.
p) The product of the reaction of propanal with ethylidenetriphenylphosphorane is shown below.
q) The product of the reaction of propanal with sodium cyanide with addition of sulfuric acid is shown below.
r) The product of the reaction of propanal with chromic acid is shown below.
Explanation of Solution
a) The product obtained by the reaction between, propanal and the reagent, lithium aluminum hydride, followed by water.
The reaction of propanal with lithium aluminum hydride, followed by water gives primary alcohol as the final product. The product of this reaction is shown below.
b) The product obtained by the reaction between propanal and the reagent, sodium borohydride, methanol.
The reaction of propanal with sodium borohydride, followed by methanol gives primary alcohol as the final product. The product of this reaction is shown below.
c) The product obtained by the reaction between the given compound, propanal and the reagent, hydrogen (nickel catalyst).
The reaction of propanal with hydrogen in the presence of nickel catalyst gives
d) The product obtained by the reaction between propanal and the reagent, methylmagnesium iodide, followed by dilute acid.
The reaction of propanal with methylmagnesium iodide that is Grignard reagent, followed by dilute acid gives alcohol as the final product. The product of this reaction is shown below.
e) The product obtained by the reaction between propanal and the reagent, sodium acetylide, followed by dilute acid.
The reaction of aldehyde with sodium acetylide is fundamentally similar to the Grignard reaction. The reaction of propanal with sodium acetylide, followed by dilute acid gives alcohol. The product of this reaction is shown below.
f) The product obtained by the reaction between propanal and the reagent, phenyllithium, followed by dilute acid.
The reaction of propanal with phenyllithium, followed by dilute acid gives alcohol as the final product. The product of this reaction is shown below.
g) The product obtained by the reaction between the given compound, propanal and the reagent, methanol containing dissolved hydrogen chloride.
The reaction of aldehydes with two equivalents of an alcohol results in the formation of acetals. The product of this reaction is shown below.
h) The product obtained by the reaction between the given compound, propanal and the reagent, Ethylene glycol, p-toluenesulfonic acid, benzene.
In the reaction of aldehyde with ethylene glycol, p-toluenesulfonic acid and benzene, the protection of the carbonyl group of aldehyde takes place. For carbonyl protection, ethylene glycol is the commonly used group. The final product resembles like ether and known as ketal during the protection of carbonyl group using ethylene glycol. The product of this reaction is shown below.
i) The product obtained by the reaction between propanal and the reagent, aniline
The reaction of aldehyde with primary
j) The product obtained by the reaction between propanal and the reagent, dimethylamine, p-toluenesulfonic acid, benzene.
The reaction of aldehyde with secondary amine forms enamine as the final product. The reaction of propanal with dimethylamine in the presence of p-toluenesulfonic acid and benzene gives
k) The product obtained by the reaction between the given compound, propanal and the reagent, hydroxylamine.
The reaction of aldehyde with hydroxylamine gives oxime as the final product. The reaction of propanal with hydroxylamine results in the formation of propionaldehyde oxime. The product of this reaction is shown below.
l) The product obtained by the reaction between the given compound, propanal and the reagent, hydrazine.
The reaction of aldehyde with hydrazine gives hydrazone. The reaction of propanal with hydrazine gives propionaldehyde hydrazone as the final product. The product of this reaction is shown below.
m) The product obtained by the reaction between propanal and the product of part (l) heated in triethylene glycol with sodium hydroxide.
The reaction of aldehyde with hydrazine gives hydrazone. The reaction of propanal with hydrazine gives propionaldehyde hydrazone as the final product. The heating of propionaldehyde hydrazone in triethylene glycol with sodium hydroxide forms
n) The product obtained by the reaction between propanal and p-nitrophenylhydrazine.
The reaction of aldehyde with hydrazine gives hydrazone. The reaction of propanal with p-Nitrophenylhydrazine gives propionaldehyde phenylhydrazone as the final product. The product of this reaction is shown below.
o) The product obtained by the reaction between propanal and semicarbazide.
The reaction of aldehyde with semicarbazide results in the formation of semicarbazone. The reaction of propanal with
p) The product obtained by the reaction between the given compound, propanal and ethylidenetriphenylphosphorane.
The reaction of propanal with ethylidenetriphenylphosphorane gives
q) The product obtained by the reaction between propanal and sodium cyanide with addition of sulfuric acid.
The reaction of aldehyde with sodium cyanide results in the formation of cyanohydrin. The product of this reaction is shown below.
r) The product obtained by the reaction between propanal and chromic acid.
The reaction of propanal with chromic acid gives propionic acid as the final product. The product of this reaction is shown below.
Want to see more full solutions like this?
Chapter 18 Solutions
ORGANIC CHEMISTRY (LOOSELEAF)-PACKAGE
- Please answer the questions in the photos and please revise any wrong answers. Thank youarrow_forward(Please be sure that 7 carbons are available in the structure )Based on the 1H NMR, 13C NMR, DEPT 135 NMR and DEPT 90 NMR, provide a reasoning step and arrive at the final structure of an unknown organic compound containing 7 carbons. Dept 135 shows peak to be positive at 128.62 and 13.63 Dept 135 shows peak to be negative at 130.28, 64.32, 30.62 and 19.10.arrow_forward-lease help me answer the questions in the photo.arrow_forward
- For the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forwardI need help with this question. Step by step solution, please!arrow_forwardZn(OH)2(s) Zn(OH)+ Ksp = 3 X 10-16 B₁ = 1 x 104 Zn(OH)2(aq) B₂ = 2 x 1010 Zn(OH)3 ẞ3-8 x 1013 Zn(OH) B4-3 x 1015arrow_forward
- Help me understand this by showing step by step solution.arrow_forwardscratch paper, and the integrated rate table provided in class. our scratch work for this test. Content attribution 3/40 FEEDBACK QUESTION 3 - 4 POINTS Complete the equation that relates the rate of consumption of H+ and the rate of formation of Br2 for the given reaction. 5Br (aq) + BrO3 (aq) + 6H (aq) →3Br2(aq) + 3H2O(l) • Your answers should be whole numbers or fractions without any decimal places. Provide your answer below: Search 尚 5 fn 40 * 00 99+ 2 9 144 a [arrow_forward(a) Write down the structure of EDTA molecule and show the complex structure with Pb2+ . (b) When do you need to perform back titration? (c) Ni2+ can be analyzed by a back titration using standard Zn2+ at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of Ni2+ in dilute HCl is treated with 25.00 mL of 0.05283 M Na2EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M Zn2+ requires 17.61 mL to reach the red end point. What is the molarity of Ni2+ in the unknown?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





