The resistance of a typical carbon film resistor will decrease by about 0.05% of its stated value for each degree Celsius increase in temperature. Silicon is very sensitive to temperature, decreasing its resistance by about 7% for each degree Celsius increase in temperature. This can be a serious problem in modern electronics and computers since silicon is the primary material from which many electronic devices are fabricated.
Create a proper plot to compare a carbon film resistor with a resistor fabricated from specially doped silicon (“doped” means impurities such as phosphorus or boron have been added to the silicon).
For relatively small temperature differences from the reference temperature, this process is essentially linear. Use polyfit to determine linear models for each data set. For each model, add the trendline and the associated trendline equation to the graph. Use an appropriate location for the equations to clearly associate them with the correct trendline.
Trending nowThis is a popular solution!
Chapter 18 Solutions
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
- Define Gas Constant and Universal Gas Constantarrow_forwardstate Boyle's Law. A receiver contains 0.25 m³ of air at a pressure of 1700 kPa and a temperature of 18 ° C . Calculate the final pressure after 2.5 kg of air is added if the final temperature is 20.5 ° C . Take R for air = 0.287 kJ / kg / ° Karrow_forwardHeat energy is transferred to 1.36 kg of air which causes its temperature to increase from 40" CO 468°C. Calculate, for the two separate cases of heat transfer at (a) constant volume, (b) constant pressure: the quantity of heat energy transferred, (ii) the external work done, (iii) the increase in internal energy. Take cv and cp as 0.718 and 1.005 kJ/kgK respectivelyarrow_forward
- A flat circular plate is 500 mm diameter. Calculate the theoretical quantity or heat radiated per hour when its temperature is 215°C and the temperature of its surrounds is 45°C. Take the value of the radiation constant to be 5.67 × 10^11 kJ/m2s K4.arrow_forwardDescribe Atmospheric Air and how it reacts with carbon in combustionarrow_forwardDefine Latent Heat of Fusion and Evaporationarrow_forward
- Define Conduction Radiation and convection. and reference to a marine boilerarrow_forwardWhat is anhydrous ammonia and what it is used for?arrow_forward0.5 kg of ice at —5°C is put into a vessel containing 1.8kg of water at 17°C and mixed together, the result being a mixture of ice and water at 0°C. Calculate the final masses of ice and water, taking the water equivalent of the vessel to be 0.148 kg, specific heat of ice 2.04 kilkg K and latent heat of fusion 335 kJ/kg.arrow_forward
- A condenser vacuum gauge reads 715 mmHg when the barometer stands at 757 mmHg. State the absolute pressure in the condenser in kN/m2 and bars.arrow_forwardSketch and Describe a timing diagram for a 2 stroke diesel enginearrow_forwardManipulate the formula for converting temperature from Fahrenheit to Celsiusarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning