Review. The top end of a yo-yo string is held stationary. The yo-yo itself is much more massive than the string. It starts from rest and moves down with constant acceleration 0.800 m/s 2 as it unwinds from the string. The rubbing of the string against the edge of the yo-yo excites transverse standing-wave vibrations in the string. Both ends of the string are nodes even as the length of the string increases. Consider the instant 1.20 s after the motion begins from rest. (a) Show that the rate of change with time of the wavelength of the fundamental mode of oscillation is 1.92 m/s. (b) What if? Is the rate of change of the wavelength of the second harmonic also 1.92 m/s at this moment? Explain your answer. (c) What if? The experiment is repeated after more mass has been added to the yo-yo body. The mass distribution is kept the same so that the yo-yo still moves with downward acceleration 0.800 m/s 2 . At the 1.20-s point in this case, is the rate of change of the fundamental wavelength of the string vibration still equal to 1.92 m/s? Explain. (d) Is the rate of change of the second harmonic wavelength the same as in part (b)? Explain.
Review. The top end of a yo-yo string is held stationary. The yo-yo itself is much more massive than the string. It starts from rest and moves down with constant acceleration 0.800 m/s 2 as it unwinds from the string. The rubbing of the string against the edge of the yo-yo excites transverse standing-wave vibrations in the string. Both ends of the string are nodes even as the length of the string increases. Consider the instant 1.20 s after the motion begins from rest. (a) Show that the rate of change with time of the wavelength of the fundamental mode of oscillation is 1.92 m/s. (b) What if? Is the rate of change of the wavelength of the second harmonic also 1.92 m/s at this moment? Explain your answer. (c) What if? The experiment is repeated after more mass has been added to the yo-yo body. The mass distribution is kept the same so that the yo-yo still moves with downward acceleration 0.800 m/s 2 . At the 1.20-s point in this case, is the rate of change of the fundamental wavelength of the string vibration still equal to 1.92 m/s? Explain. (d) Is the rate of change of the second harmonic wavelength the same as in part (b)? Explain.
Review. The top end of a yo-yo string is held stationary. The yo-yo itself is much more massive than the string. It starts from rest and moves down with constant acceleration 0.800 m/s2 as it unwinds from the string. The rubbing of the string against the edge of the yo-yo excites transverse standing-wave vibrations in the string. Both ends of the string are nodes even as the length of the string increases. Consider the instant 1.20 s after the motion begins from rest. (a) Show that the rate of change with time of the wavelength of the fundamental mode of oscillation is 1.92 m/s. (b) What if? Is the rate of change of the wavelength of the second harmonic also 1.92 m/s at this moment? Explain your answer. (c) What if? The experiment is repeated after more mass has been added to the yo-yo body. The mass distribution is kept the same so that the yo-yo still moves with downward acceleration 0.800 m/s2. At the 1.20-s point in this case, is the rate of change of the fundamental wavelength of the string vibration still equal to 1.92 m/s? Explain. (d) Is the rate of change of the second harmonic wavelength the same as in part (b)? Explain.
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d.
Ag
dFe
= 2.47
×
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d
Ag
= 2.51
dFe
×
Show that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R.
Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [?
v2
v2
A, are equivalent to J/C ✓ X . Therefore, 1
= 1
= 1 A V1 J/s
Ω
V-A X
= 1 W.
. The units for resistance, Q, are equivalent to ?
The units for current,
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.