EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.40P
The overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends, (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent antinodes for this mode of vibration.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The overall length of a piccolo is 32.0 cm. The resonating air column vibrates as in a pipe that is open at both ends.
(a) Find the frequency of the lowest note a piccolo can play.
Hz
(b) Opening holes in the side effectively shortens the length of the resonant column. If the highest note a piccolo can sound is 4,000 Hz, find the distance
between adjacent antinodes for this mode of vibration.
cm
A stretched string fixed at each end has a mass
of 40.0g and a length of 8.00m. The tension in
the string is 49.0N. (a) Determine the positions
of the nodes and antinodes for the third
harmonic. (b) What is the vibration frequency
for this harmonic?
A thin 1.0-m metal rod sustains a longitudinal standing wave with vibration antinodes at each end of the rod. There are no other antinodes. The density and Young's modulus of this metal are, respectively, 2900 kg/m3 and 4.5x1010 N/m2. What is the frequency of the rod's vibration?
Chapter 18 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 18 - Prob. 18.1QQCh. 18 - Consider the waves in Figure 17.8 to be waves on a...Ch. 18 - When a standing wave is set up on a string fixed...Ch. 18 - Prob. 18.4QQCh. 18 - Balboa Park in San Diego has an outdoor organ....Ch. 18 - In figure OQ18.1 (page 566), a sound wave of...Ch. 18 - A string of length L, mass pet unit length , and...Ch. 18 - In Example 18.1, we investigated an oscillator at...Ch. 18 - Prob. 18.4OQCh. 18 - A flute has a length of 58.0 cm. If the speed of...
Ch. 18 - When two tuning forks are sounded at the same...Ch. 18 - A tuning fork is known to vibrate with frequency...Ch. 18 - An archer shoots an arrow horizontally from the...Ch. 18 - As oppositely moving pulses of the same shape (one...Ch. 18 - Prob. 18.10OQCh. 18 - Suppose all six equal-length strings of an...Ch. 18 - Assume two identical sinusoidal waves are moving...Ch. 18 - Prob. 18.1CQCh. 18 - When two waves interfere constructively or...Ch. 18 - Prob. 18.3CQCh. 18 - What limits the amplitude of motion of a real...Ch. 18 - Prob. 18.5CQCh. 18 - An airplane mechanic notices that the sound from a...Ch. 18 - Despite a reasonably steady hand, a person often...Ch. 18 - Prob. 18.8CQCh. 18 - Does the phenomenon of wave interference apply...Ch. 18 - Two waves are traveling in the same direction...Ch. 18 - Two wave pulses A and B are moving in opposite...Ch. 18 - Two waves on one string are described by the wave...Ch. 18 - Two pulses of different amplitudes approach each...Ch. 18 - A tuning fork generates sound waves with a...Ch. 18 - The acoustical system shown in Figure OQ18.1 is...Ch. 18 - Two pulses traveling on the same string are...Ch. 18 - Two identical loudspeakers are placed on a wall...Ch. 18 - Two traveling sinusoidal waves are described by...Ch. 18 - Why is the following situation impossible? Two...Ch. 18 - Two sinusoidal waves on a string are defined by...Ch. 18 - Two identical sinusoidal waves with wavelengths of...Ch. 18 - Two identical loudspeakers 10.0 m apart are driven...Ch. 18 - Prob. 18.14PCh. 18 - Two sinusoidal waves traveling in opposite...Ch. 18 - Verify by direct substitution that the wave...Ch. 18 - Two transverse sinusoidal waves combining in a...Ch. 18 - A standing wave is described by the wave function...Ch. 18 - Two identical loudspeakers are driven in phase by...Ch. 18 - Prob. 18.20PCh. 18 - A string with a mass m = 8.00 g and a length L =...Ch. 18 - The 64.0-cm-long string of a guitar has a...Ch. 18 - The A string on a cello vibrates in its first...Ch. 18 - A taut string has a length of 2.60 m and is fixed...Ch. 18 - A certain vibrating string on a piano has a length...Ch. 18 - A string that is 30.0 cm long and has a mass per...Ch. 18 - In the arrangement shown in Figure P18.27, an...Ch. 18 - In the arrangement shown in Figure P17.14, an...Ch. 18 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 18 - Review. A sphere of mass M is supported by a...Ch. 18 - Prob. 18.31PCh. 18 - Review. A solid copper object hangs at the bottom...Ch. 18 - Prob. 18.33PCh. 18 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 18 - An earthquake can produce a seiche in a lake in...Ch. 18 - High-frequency sound can be used to produce...Ch. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - Calculate the length of a pipe that has a...Ch. 18 - The overall length of a piccolo is 32.0 cm. The...Ch. 18 - The fundamental frequency of an open organ pipe...Ch. 18 - Prob. 18.42PCh. 18 - An air column in a glass tube is open at one end...Ch. 18 - Prob. 18.44PCh. 18 - Prob. 18.45PCh. 18 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 18 - Prob. 18.47PCh. 18 - Prob. 18.48PCh. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - Two adjacent natural frequencies of an organ pipe...Ch. 18 - Why is the following situation impossible? A...Ch. 18 - A student uses an audio oscillator of adjustable...Ch. 18 - An aluminum rod is clamped one-fourth of the way...Ch. 18 - Prob. 18.55PCh. 18 - Prob. 18.56PCh. 18 - In certain ranges of a piano keyboard, more than...Ch. 18 - Prob. 18.58PCh. 18 - Review. A student holds a tuning fork oscillating...Ch. 18 - An A-major chord consists of the notes called A,...Ch. 18 - Suppose a flutist plays a 523-Hz C note with first...Ch. 18 - A pipe open at both ends has a fundamental...Ch. 18 - Prob. 18.63APCh. 18 - Two strings are vibrating at the same frequency of...Ch. 18 - Prob. 18.65APCh. 18 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 18 - The fret closest to the bridge on a guitar is 21.4...Ch. 18 - Prob. 18.68APCh. 18 - A quartz watch contains a crystal oscillator in...Ch. 18 - Review. For the arrangement shown in Figure...Ch. 18 - Prob. 18.71APCh. 18 - Two speakers are driven by the same oscillator of...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Review. The top end of a yo-yo string is held...Ch. 18 - On a marimba (Fig. P18.75), the wooden bar that...Ch. 18 - A nylon siring has mass 5.50 g and length L = 86.0...Ch. 18 - Two train whistles have identical frequencies of...Ch. 18 - Review. A loudspeaker at the front of a room and...Ch. 18 - Prob. 18.79APCh. 18 - Prob. 18.80APCh. 18 - Prob. 18.81APCh. 18 - A standing wave is set up in a string of variable...Ch. 18 - Two waves are described by the wave functions...Ch. 18 - Prob. 18.84APCh. 18 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 18 - Review. An object of mass m hangs in equilibrium...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Prob. 18.88CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forwardA taut tope has a mass of 0.180 kg and a length of. 3.60 m. What power must be .supplied to the rope so as generate sinusoidal waxes having an amplitude of 0.100 in and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forward
- A cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardTwo sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardPipe A has a length L and is open at both ends. Pipe B has a length L/2 and has one open end and one closed end. Assume the speed of sound to be the same in both tubes. Which of the harmonics in each tube would be equal?arrow_forward
- As in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forwardA string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardReview. A tuning fork vibrating at 512 Hz falls from rest and accelerates at 9.80 m/s2. How far below the point of release is the tuning fork when waves of frequency 485 Hz reach the release point?arrow_forward
- (c) Opening holes in the side effectively shortens the length of the resonant column. If the highest note a piccolo can sound is 39.4 kHz, find the distance between adjacent antinodes for this mode of vibration. Assume the speed of sound is 343 m/s.arrow_forwardcan you please ans (d) & (e)?arrow_forward(a) The period of the lowest-frequency sound the normal ear can hear is 0.050 s. Calculate its vibrational frequency. (b) The highest-frequency sound heard by a normal ear is about 20,000 Hz. Calculate the time for one vibration.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY