Concept explainers
In figure OQ18.1 (page 566), a sound wave of wave-lenght 0.8 m divides into two equal parts that recombine to interfere constructively, with the original difference between their path lengths being |r2 – r1| = 0.8 m. Rank the following situations according to the intensity of sound at the receiver from the highest to the lowest. Assume the tube walls absorb no sound energy. Give equal ranks to situations in which the intensity is equal.
(a) From its original position, the sliding section is moved out by 0.1 m. (b) Next it slides out an additional 0.1 m. (c) It slides out still another 0.1 m. (d) It slides out 0.1 m more.
The ranking of the situations according to the intensity of sound at the receiver in descending order.
Answer to Problem 18.1OQ
The ranking of the situations according to the intensity of sound at the receiver in descending order is
Explanation of Solution
Given info: The wavelength of the sound wave is
Write the expression for the intensity heard by the receiver.
Here,
For Case (a);
The section is moved out by
The path length
Thus, the value of
Write the expression for phase difference,
Substitute
Thus, the value of
Substitute
Thus the value of
For Case (b);
The section is again moved out by
The path length
Thus, the value of
Write the expression for phase difference,
Substitute
Thus, the value of
Substitute
Thus the value of
For Case (c);
The section is again moved out by
The path length
Thus, the value of
Write the expression for phase difference,
Substitute
Thus, the value of
Substitute
Thus, the value of
For Case (d);
The section is again moved out by
The path length
Thus, the value of
Write the expression for phase difference,
Substitute
Thus, the value of
Substitute
Thus, the value of
The ranking of the intensity of each case is,
Conclusion:
Therefore, the ranking of the situations according to the intensity of sound at the receiver in descending order is
Want to see more full solutions like this?
Chapter 18 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardTwo sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string producing a standing wave. The linear mass density of the string is =0.075 kg/m and the tension in the string is FT=5.00 N. The time interval between instances of total destructive interference is t=0.13 s. What is the wavelength of the waves?arrow_forwardTwo sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forward
- The area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forwardA pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forward(a) At an air show a jet flies directly toward the stands at a speed of 1200 km/h, emitting a frequency of 3500 Hz, on a day when the speed of sound is 342 m/s. What frequency is received by the observers? (b) What frequency do they receive as the plane flies directly away from them?arrow_forward
- Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forward(a) At an air show a jet flies directly toward the stands at a speed of 1200 km/h, emitting a frequency of 3500 Hz, on a day when the speed of sound is 342 m/s. What frequency is received by the observers? (b) What frequency do they receive as the plane flies directly away from them?arrow_forwardAt t = 0, a transverse pulse in a wire is described by the function y=6.00x2+3.00 where xand y are in meters. If the pulse is traveling in the positive x direction with a speed of 4.50 m/s, write the function y(x, t) that describes this pulse.arrow_forward
- (a) What is the speed of sound in a medium where a 100kHz frequency produces a 5.96cm wavelength? (b) Which substance in Table 17.1 is this likely to be?arrow_forwardAs you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ13.15) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz, whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz, whereas the ambulance driver hears a frequency of 500 Hz. Figure OQ13.15arrow_forwardThe speaker system at an open-air rock concert forms a ring around the entire circular stage and delivers 50,000 W of power output. Assume the sound radiates in all directions equally as if it were generated by an isotropic point source and assume the sound energy is not absorbed by air. a. At what distance is the sound from the speakers barely audible? Note that your answer will be far too large since the model we are using for sound level ignores the power absorbed by the medium (air). How does your answer compare to the radius of the Earth? b. What is the closest distance audience members can be to the speakers if the sound is not to be painful to their ears?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College