Concept explainers
For each N-substituted benzene, predict whether the compound reacts faster than, slower than, or at a similar rate to benzene in electrophilic
a. b. c. d.
(a)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.49P
The given compound reacts faster in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 1
The given compound reacts faster in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
(b)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.49P
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 2
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
(c)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.49P
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 3
The given compound reacts slower in electrophilic substitution reaction than benzene ring. The major product formed by the reaction between given compound and general electrophile
(d)
Interpretation: The given compound reacts faster than, slower than, or at equal rate to benzene in electrophilic aromatic substitution is to be predicted and the major product(s) formed by the reaction between given compound and general electrophile
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron deficient chemical species that contains positive charge are known as electrophile. In electrophilic aromatic substitution reaction, electrophile takes the position of hydrogen atom by attacking the electron rich carbon atom of benzene.
Answer to Problem 18.49P
The given compound reacts at a similar rate to benzene in electrophilic substitution reaction. The major product formed by the reaction between given compound and general electrophile
Explanation of Solution
The electron donating groups or activating groups make benzene ring more electron rich, as a result the compound reacts faster in electrophilic substitution reaction than benzene ring. On the other hand, the electron withdrawing groups or deactivating groups make benzene ring less electron rich; as a result the compound reacts slower in electrophilic substitution reaction than benzene ring.
In the given compound, benzene ring is attached to
The activating groups are ortho, para directing whereas the deactivating groups are meta directing. The major product formed by the reaction between given compound and general electrophile
Figure 4
The given compound reacts at a similar rate to benzene in electrophilic substitution reaction. The major product formed by the reaction between given compound and general electrophile
Want to see more full solutions like this?
Chapter 18 Solutions
ORGANIC CHEMISTRY
- (12) Which one of the following statements about fluo- rometry is FALSE? a) Fluorescence is better detected at 90 from the exci- tation direction. b) Fluorescence is typically shifted to longer wave- length from the excitation wavelength. c) For most fluorescent compounds, radiation is pro- duced by a transitionarrow_forwardDon't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardIndicate the correct option.a) Graphite conducts electricity, being an isotropic materialb) Graphite is not a conductor of electricityc) Both are falsearrow_forward(f) SO: Best Lewis Structure 3 e group geometry:_ shape/molecular geometry:, (g) CF2CF2 Best Lewis Structure polarity: e group arrangement:_ shape/molecular geometry: (h) (NH4)2SO4 Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forward
- 1. Problem Set 3b Chem 141 For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the molecule is polar or non-polar (iv) (a) SeF4 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: (b) AsOBr3 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles):arrow_forward(c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forwardDon't used Ai solutionarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning