
Concept explainers
(a)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, the role of atom present.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and resonance stabilization of benzene thiol.
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 1
The conjugate base of benzene thiol is stabilized by the resonance that is why its acidity is greater among the given compounds. The cyclohexyl mercaptan contains sulfur atom which is larger than the oxygen atom, due to this it is more capable of diffusing negative charge. Therefore, the cyclohexyl mercaptan conjugate base is more stable than the cyclohexanol. This results in greater acidity of the cyclohexyl mercaptan compound.
The increasing order of acidity of the given compound is shown below.
The increasing order of acidity is
(b)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, the role of the atom present, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and resonance stabilization of phenol and
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 2
The conjugate base of phenoxide ion is stabilized by the resonance that is why its acidity is greater among the given compounds. The conjugate base of benzyl alcohol exerts
The increasing order of acidity is
(c)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, electronegativity, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and equivalent resonance stabilization of nitric acid.
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 3
The equivalent resonance structures are more stable as compared to nonequivalent resonance structures. The nitric acid conjugate base shows equivalent resonance structures. Also, it is stabilized by the negative charge on the two oxygen atoms. It also exerts
The increasing order of acidity is
(d)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, electronegativity, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability and resonance stabilization of
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 4
The conjugate base of
The increasing order of acidity is
(e)
Interpretation:
The increasing order of acidity with the reason for the given compounds is to be stated.
Concept introduction:
Brønsted bases are those species which accept a proton. Base accepts a proton and forms conjugate acid. Brønsted acids are those species which donate a proton. Acid loses a proton and forms conjugate base. The acidity of the compound depends upon the stability of its conjugate base. The more stable the conjugate base, the more acidic the given compound. It also depends on the charge, inductive effects, electronegativity, resonance, orbitals.

Answer to Problem 18.49AP
The acidity of the given compounds in increasing order is shown below.
This is because of the conjugate base stability,
Explanation of Solution
The acidity of the compound depends upon the stability of its conjugate base. The greater the stability of the conjugate base more acidic the given compound. The structure of the conjugate base of the given compounds is shown below.
Figure 5
The conjugate base of the compound B stabilized by
The increasing order of acidity is
Want to see more full solutions like this?
Chapter 18 Solutions
Organic Chemistry Study Guide and Solutions
- +3413 pts /4800 Question 38 of 48 > Write the full electron configuration for a Kion. © Macmillan Learning electron configuration: ↓ Resources Solution Penalized → Al Tutor Write the full electron configuration for an Fion. electron configuration: T G 6 & 7 Y H כ Y 00 8 hp 9 J K no L 144 P 112 | t KC 47°F Clear ins prt sc delete ] backspace erarrow_forwardHow to solve these types of problems step by step? I'm so confused.arrow_forwardIdentify the expected product of the following Claisen rearrangement. || = IV OV 00000 5 ОН Он Он Он Он || III IV Varrow_forward
- Can you please color-code and explain how to solve this and any molecular orbital diagram given? I'm so confused; could you provide baby steps regardless of which problem type they gave me?arrow_forwardConsider the following structure. OH Esmolol The synthesis of this compound uses a building block derived from either ethylene oxide or epichlorohydrin. 1) Determine which building block was used: | 2) Draw the structure of the nucleophiles that were used along with this building block in the synthesis of the molecule. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. You do not have to consider stereochemistry. Θε {n [arrow_forward< 10:44 5GW 10 Question 7/8 Show Answer Convert 46.0 mm to inches (1 inch = 2.54 cm) 46.0 DAM STARTING AMOUNT 1 cm 1 in 46.0 mm x ☑ 10 mm 10 cm ADD FACTOR DELETE x() X × = 1.81 in = 1 10 Dam ANSWER RESET ១ 2.54 0.0460 mm 10 1000 in 0.001 11.7 m 4.60 18.1 cm 100 1.81 0.394 1 0.1 46.0 0.01 Tap here for additional resourcesarrow_forward
- < 10:44 Question 6/8 5GW (10 Submit A cake recipe calls for 230.0 mL of buttermilk. How 230.0 many cups is this? DAL STARTING AMOUNT × 1 cups 230.0 mL x = 0.9722 cups 230.0 mL ADD FACTOR DELETE (( ) = 1 cups 230.0 DAE ANSWER RESET ១ 9.722 × 105 0.8706 cups 8.706 × 104 1 L 8.706 × 105 0.9722 quart 10 100 mL 0.001 0.1 6.076 × 103 0.01 9.722 × 104 230.0 0.06076 4 1.0567 1000 6.076 × 104 Tap here for additional resourcesarrow_forward< 10:44 Question 6/8 5GW (10 Submit A cake recipe calls for 230.0 mL of buttermilk. How 230.0 many cups is this? DAL STARTING AMOUNT × 1 cups 230.0 mL x = 0.9722 cups 230.0 mL ADD FACTOR DELETE (( ) = 1 cups 230.0 DAE ANSWER RESET ១ 9.722 × 105 0.8706 cups 8.706 × 104 1 L 8.706 × 105 0.9722 quart 10 100 mL 0.001 0.1 6.076 × 103 0.01 9.722 × 104 230.0 0.06076 4 1.0567 1000 6.076 × 104 Tap here for additional resourcesarrow_forwardShow work in detailed of all the options. Don't give Ai generated solutionarrow_forward
- Predict the Product. Predict the major organic product for the following reaction:arrow_forwardPlease provide the complete mechanism for the reaction below including arrows, intermediates, and formal charges.arrow_forwardCan you please explain this to me? Maybe color-code it in essence and highlight it.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
