BIO Axons. Neurons are the basic units of the nervous system They contain long tubular structures called axons that propagate electrical signals away from the ends of the neurons. The axon contains a solution of potassium ions K + and large negative organic ions. The axon membrane prevents the large ions from leaking out, but the smaller K + ions are able to penetrate the membrane to some degree. (See Figure 18.35 .) This leaves an excess of negative charge on the inner surface of the axon membrane and an excess of positive charge on the outer surface, resulting in a potential difference across the membrane that prevents further K + ions from leaking out Measurements show that this potential difference is typically about 70 mV. The thickness of the axon membrane itself varies from about 5 to 10 nm, so we’ll use an average of 7.5 nm. We can model the membrane as a large sheet having equal and opposite charge densities on its faces (a) Find the electric field inside the axon membrane, assuming (not too realistically) that it is filled with air. Which way does it point, into or out of the axon? (b) Which is at a higher potential, the inside surface or the outside surface of the axon membrane? Figure 18.35 Problem 11.
BIO Axons. Neurons are the basic units of the nervous system They contain long tubular structures called axons that propagate electrical signals away from the ends of the neurons. The axon contains a solution of potassium ions K + and large negative organic ions. The axon membrane prevents the large ions from leaking out, but the smaller K + ions are able to penetrate the membrane to some degree. (See Figure 18.35 .) This leaves an excess of negative charge on the inner surface of the axon membrane and an excess of positive charge on the outer surface, resulting in a potential difference across the membrane that prevents further K + ions from leaking out Measurements show that this potential difference is typically about 70 mV. The thickness of the axon membrane itself varies from about 5 to 10 nm, so we’ll use an average of 7.5 nm. We can model the membrane as a large sheet having equal and opposite charge densities on its faces (a) Find the electric field inside the axon membrane, assuming (not too realistically) that it is filled with air. Which way does it point, into or out of the axon? (b) Which is at a higher potential, the inside surface or the outside surface of the axon membrane? Figure 18.35 Problem 11.
BIO Axons. Neurons are the basic units of the nervous system They contain long tubular structures called axons that propagate electrical signals away from the ends of the neurons. The axon contains a solution of potassium ions K+ and large negative organic ions. The axon membrane prevents the large ions from leaking out, but the smaller K+ ions are able to penetrate the membrane to some degree. (See Figure 18.35.) This leaves an excess of negative charge on the inner surface of the axon membrane and an excess of positive charge on the outer surface, resulting in a potential difference across the membrane that prevents further K+ ions from leaking out Measurements show that this potential difference is typically about 70 mV. The thickness of the axon membrane itself varies from about 5 to 10 nm, so we’ll use an average of 7.5 nm. We can model the membrane as a large sheet having equal and opposite charge densities on its faces (a) Find the electric field inside the axon membrane, assuming (not too realistically) that it is filled with air. Which way does it point, into or out of the axon? (b) Which is at a higher potential, the inside surface or the outside surface of the axon membrane?
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY