
College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 31P
A parallel-plate air capacitor has a capacitance of 500.0 pF and a charge of magnitude 0.200 μC on each plate. The plates are 0.600 mm apart. (a) What is the potential difference between the plates? (b) What is the area of each plate? (c) What is the electric-field magnitude between the plates? (d) What is the surface charge density on each plate?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
If a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?
Need help with the third question (C)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his hand at an angl reesulting in the reaction force shown.
Q: What is the direction of the force on the current carrying conductor in the
magnetic field in each of the cases 1 to 8 shown below?
(1)
B
B
B into page
X X X
x
X X X X
(2)
B
11 -10°
B
x I
B
I out of page
(3)
I into page
(4)
B out of page
out of page
I
N
N
S
x X X X
I
X
X X X
I
(5)
(6)
(7)
(8)
S
Chapter 18 Solutions
College Physics (10th Edition)
Ch. 18 - Why must electric field lines be perpendicular to...Ch. 18 - Which way do electric field lines point, from high...Ch. 18 - If the electric field is zero throughout a certain...Ch. 18 - The potential (relative to a point at infinity)...Ch. 18 - A capacitor is charged by being connected to a...Ch. 18 - A capacitor is charged by being connected to a...Ch. 18 - Two parallel-plate capacitors, identical except...Ch. 18 - The two plates of a capacitor are given charges Q,...Ch. 18 - Liquid dielectrics having polar molecules (such as...Ch. 18 - To store the maximum amount of energy in a...
Ch. 18 - You have two capacitors and want to connect them...Ch. 18 - You have three capacitors, not necessarily equal,...Ch. 18 - A surface will be an equipotential surface if...Ch. 18 - In Figure 18.31, point P is equidistant from both...Ch. 18 - For the capacitor network shown in Figure 18.32, a...Ch. 18 - Two charges are placed on the x axis. A charge of...Ch. 18 - Two point charges with charge +q are initially...Ch. 18 - If the potential (relative to infinity) due to a...Ch. 18 - If the electric potential energy of two point...Ch. 18 - An electron is released between the plates of a...Ch. 18 - The plates of a parallel-plate capacitor are...Ch. 18 - When a certain capacitor carries charge of...Ch. 18 - Two large metal plates carry equal and opposite...Ch. 18 - The electric potential (relative to infinity) due...Ch. 18 - A charge of 28.0 nC is placed in a uniform...Ch. 18 - Two very large charged parallel metal plates are...Ch. 18 - How far from a 7.20 C point charge must a +2.30 C...Ch. 18 - A point charge q1 = +2 40 C is held stationary at...Ch. 18 - Two stationary point charges of +3.00 nC and +2.00...Ch. 18 - A set of point charges is held in place at the...Ch. 18 - Three equal 1.20 C point charges are placed at the...Ch. 18 - When two point charges are a distance R apart,...Ch. 18 - Two large metal parallel plates carry opposite...Ch. 18 - A potential difference of 4.75 kV is established...Ch. 18 - BIO Axons. Neurons are the basic units of the...Ch. 18 - BIO Electrical sensitivity of sharks. Certain...Ch. 18 - A particle with a charge of +4 20 nC is in a...Ch. 18 - Two very large metal parallel plates are 20.0 cm...Ch. 18 - A uniform electric field has magnitude E and is...Ch. 18 - A point charge is sitting at the origin. The...Ch. 18 - An electron is to be accelerated from 3.00 108...Ch. 18 - A small particle has charge 5.00 C and mass 2.00 ...Ch. 18 - Two point charges q1 = +2.40 nC and q2 = 6.50 nC...Ch. 18 - A point charge Q = +4.00 C is held fixed al the...Ch. 18 - Two protons are released from rest when they are...Ch. 18 - x-ray tube. An x-ray tube is an evacuated glass...Ch. 18 - A parallel-plate capacitor having plates 6.0 cm...Ch. 18 - Two very large metal parallel plates that are 25...Ch. 18 - (a) A +5.00 C charge is located on a sheet of...Ch. 18 - A +1.50 C point charge is sitting at the origin....Ch. 18 - Dipole. A dipole is located on a sheet of paper....Ch. 18 - (a) You find that if you place charges of 1.25 C...Ch. 18 - The plates of a parallel-plate capacitor are 3.28...Ch. 18 - The plates of a parallel-plate capacitor are 2.50...Ch. 18 - A parallel-plate air capacitor has a capacitance...Ch. 18 - Suppose you were to design a 1 F parallel-plate...Ch. 18 - A 10.0 F parallel-plate capacitor with circular...Ch. 18 - A 10.0 F parallel-plate capacitor is connected to...Ch. 18 - You make a capacitor by cutting the...Ch. 18 - A 5.00 pF parallel-plate air-filled capacitor with...Ch. 18 - A disk-shaped parallel-plate capacitor has a...Ch. 18 - A parallel-plate capacitor C is charged up to a...Ch. 18 - For the system of capacitors shown in Figure...Ch. 18 - Electric eels. Electric eels and electric fish...Ch. 18 - In Figure 18.39, C1 = 6.00 f, C2 = 3.00 F. and C3...Ch. 18 - You are working on an electronics pro.ect that...Ch. 18 - In Figure 18 39, C1 = 3.00 F anri Vab = 120 V. The...Ch. 18 - A 4.00 F and a 6.00 F capacitor are wired in...Ch. 18 - In the circuit shown in Figure 18.40, the...Ch. 18 - In Figure 18.41 each capacitor has C = 4.00 f and...Ch. 18 - Figure 18.42 shows a system of four capacitors...Ch. 18 - For the system of capacitors shown in Figure...Ch. 18 - How much charge does a 12 V battery have to supply...Ch. 18 - A 5.80 F parallel-plate air capacitor has a plate...Ch. 18 - (a) How much charge does a battery have to supply...Ch. 18 - In the text, it was shown that the energy stored...Ch. 18 - A parallel-plate vacuum capacitor has 8.38 J of...Ch. 18 - A 5.00 nF parallel-plate capacitor contains 25.0 J...Ch. 18 - For the capacitor network shown in Figure 18.44,...Ch. 18 - For the capacitor network shown in Figure 18.45,...Ch. 18 - For the capacitor network shown in Figure 18.46,...Ch. 18 - A parallel-plate air capacitor has a capacitance...Ch. 18 - Cell membranes. Cell membranes (the walled...Ch. 18 - A parallel-plate capacitor is to be constructed by...Ch. 18 - A 12.5 F capacitor is connected to a power supply...Ch. 18 - The paper dielectric in a paper-and-foil capacitor...Ch. 18 - A constant potential difference of 12 V is...Ch. 18 - (a) If a spherical raindrop of radius 0.650 mm...Ch. 18 - At a certain distance from a point charge, the...Ch. 18 - Two oppositely charged identical insulating...Ch. 18 - A positive point charge Q is placed at a position...Ch. 18 - An alpha particle with a kinetic energy of 10.0...Ch. 18 - In the Bohr model of the hydrogen atom, a single...Ch. 18 - A proton and an alpha particle are released from...Ch. 18 - A parallel-plate air capacitor is made from two...Ch. 18 - In the previous problem, suppose the battery...Ch. 18 - A capacitor consists of two parallel plates, each...Ch. 18 - Electronic flash units for cameras contain a...Ch. 18 - In Figure 18.49, each capacitance C1 is 6.9 F and...Ch. 18 - Prob. 76PPCh. 18 - A helium ion (He++) that comes within about 10 fm...Ch. 18 - The maximum voltage at the center of a typical...Ch. 18 - How many moles of Na+ must move per unit area of...Ch. 18 - Prob. 80PPCh. 18 - Suppose that the change in Vm was caused by the...Ch. 18 - What is the minimum amount of work that must be...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Of the following statements about protected areas that have been established to preserve biodiversity, which on...
Campbell Biology (11th Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
15. In the Olympic shotput event, an athlete throws the shot with an initial speed of 12.0 m/s at a 40.0° angle...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q: What is the direction of the magnetic field at point A, due to the current I in a wire, in each of the cases 1 to 6 shown below? Note: point A is in the plane of the page. ▪A I I ▪A (1) (2) ▪A • I (out of page) (3) ▪A I x I (into page) ▪A ▪A I (4) (5) (6)arrow_forwardA tennis ball is thrown into the air with initial speed vo=46 m/s and angle (theta) 38 degrees from the ground. Find the distance it travels (x) when it hits the ground.arrow_forwardProblem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?arrow_forward
- A 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuitarrow_forwardA ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.arrow_forwardCorrect answer please. I will upvote.arrow_forward
- Define operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forward
- helparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY