College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 48P
For the system of capacitors shown in Figure 18.43, a potential difference of 25 V is maintained across ab. (a) What is the equivalent capacitance of this system between a and b? (b) How much charge is stored by this system? (c) How much charge does the 6.5 nF capacitor store? (d) What is the potential difference across the 7.5 nF capacitor?
Figure 18 43
Problem 48.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote
A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .
An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?
Chapter 18 Solutions
College Physics (10th Edition)
Ch. 18 - Why must electric field lines be perpendicular to...Ch. 18 - Which way do electric field lines point, from high...Ch. 18 - If the electric field is zero throughout a certain...Ch. 18 - The potential (relative to a point at infinity)...Ch. 18 - A capacitor is charged by being connected to a...Ch. 18 - A capacitor is charged by being connected to a...Ch. 18 - Two parallel-plate capacitors, identical except...Ch. 18 - The two plates of a capacitor are given charges Q,...Ch. 18 - Liquid dielectrics having polar molecules (such as...Ch. 18 - To store the maximum amount of energy in a...
Ch. 18 - You have two capacitors and want to connect them...Ch. 18 - You have three capacitors, not necessarily equal,...Ch. 18 - A surface will be an equipotential surface if...Ch. 18 - In Figure 18.31, point P is equidistant from both...Ch. 18 - For the capacitor network shown in Figure 18.32, a...Ch. 18 - Two charges are placed on the x axis. A charge of...Ch. 18 - Two point charges with charge +q are initially...Ch. 18 - If the potential (relative to infinity) due to a...Ch. 18 - If the electric potential energy of two point...Ch. 18 - An electron is released between the plates of a...Ch. 18 - The plates of a parallel-plate capacitor are...Ch. 18 - When a certain capacitor carries charge of...Ch. 18 - Two large metal plates carry equal and opposite...Ch. 18 - The electric potential (relative to infinity) due...Ch. 18 - A charge of 28.0 nC is placed in a uniform...Ch. 18 - Two very large charged parallel metal plates are...Ch. 18 - How far from a 7.20 C point charge must a +2.30 C...Ch. 18 - A point charge q1 = +2 40 C is held stationary at...Ch. 18 - Two stationary point charges of +3.00 nC and +2.00...Ch. 18 - A set of point charges is held in place at the...Ch. 18 - Three equal 1.20 C point charges are placed at the...Ch. 18 - When two point charges are a distance R apart,...Ch. 18 - Two large metal parallel plates carry opposite...Ch. 18 - A potential difference of 4.75 kV is established...Ch. 18 - BIO Axons. Neurons are the basic units of the...Ch. 18 - BIO Electrical sensitivity of sharks. Certain...Ch. 18 - A particle with a charge of +4 20 nC is in a...Ch. 18 - Two very large metal parallel plates are 20.0 cm...Ch. 18 - A uniform electric field has magnitude E and is...Ch. 18 - A point charge is sitting at the origin. The...Ch. 18 - An electron is to be accelerated from 3.00 108...Ch. 18 - A small particle has charge 5.00 C and mass 2.00 ...Ch. 18 - Two point charges q1 = +2.40 nC and q2 = 6.50 nC...Ch. 18 - A point charge Q = +4.00 C is held fixed al the...Ch. 18 - Two protons are released from rest when they are...Ch. 18 - x-ray tube. An x-ray tube is an evacuated glass...Ch. 18 - A parallel-plate capacitor having plates 6.0 cm...Ch. 18 - Two very large metal parallel plates that are 25...Ch. 18 - (a) A +5.00 C charge is located on a sheet of...Ch. 18 - A +1.50 C point charge is sitting at the origin....Ch. 18 - Dipole. A dipole is located on a sheet of paper....Ch. 18 - (a) You find that if you place charges of 1.25 C...Ch. 18 - The plates of a parallel-plate capacitor are 3.28...Ch. 18 - The plates of a parallel-plate capacitor are 2.50...Ch. 18 - A parallel-plate air capacitor has a capacitance...Ch. 18 - Suppose you were to design a 1 F parallel-plate...Ch. 18 - A 10.0 F parallel-plate capacitor with circular...Ch. 18 - A 10.0 F parallel-plate capacitor is connected to...Ch. 18 - You make a capacitor by cutting the...Ch. 18 - A 5.00 pF parallel-plate air-filled capacitor with...Ch. 18 - A disk-shaped parallel-plate capacitor has a...Ch. 18 - A parallel-plate capacitor C is charged up to a...Ch. 18 - For the system of capacitors shown in Figure...Ch. 18 - Electric eels. Electric eels and electric fish...Ch. 18 - In Figure 18.39, C1 = 6.00 f, C2 = 3.00 F. and C3...Ch. 18 - You are working on an electronics pro.ect that...Ch. 18 - In Figure 18 39, C1 = 3.00 F anri Vab = 120 V. The...Ch. 18 - A 4.00 F and a 6.00 F capacitor are wired in...Ch. 18 - In the circuit shown in Figure 18.40, the...Ch. 18 - In Figure 18.41 each capacitor has C = 4.00 f and...Ch. 18 - Figure 18.42 shows a system of four capacitors...Ch. 18 - For the system of capacitors shown in Figure...Ch. 18 - How much charge does a 12 V battery have to supply...Ch. 18 - A 5.80 F parallel-plate air capacitor has a plate...Ch. 18 - (a) How much charge does a battery have to supply...Ch. 18 - In the text, it was shown that the energy stored...Ch. 18 - A parallel-plate vacuum capacitor has 8.38 J of...Ch. 18 - A 5.00 nF parallel-plate capacitor contains 25.0 J...Ch. 18 - For the capacitor network shown in Figure 18.44,...Ch. 18 - For the capacitor network shown in Figure 18.45,...Ch. 18 - For the capacitor network shown in Figure 18.46,...Ch. 18 - A parallel-plate air capacitor has a capacitance...Ch. 18 - Cell membranes. Cell membranes (the walled...Ch. 18 - A parallel-plate capacitor is to be constructed by...Ch. 18 - A 12.5 F capacitor is connected to a power supply...Ch. 18 - The paper dielectric in a paper-and-foil capacitor...Ch. 18 - A constant potential difference of 12 V is...Ch. 18 - (a) If a spherical raindrop of radius 0.650 mm...Ch. 18 - At a certain distance from a point charge, the...Ch. 18 - Two oppositely charged identical insulating...Ch. 18 - A positive point charge Q is placed at a position...Ch. 18 - An alpha particle with a kinetic energy of 10.0...Ch. 18 - In the Bohr model of the hydrogen atom, a single...Ch. 18 - A proton and an alpha particle are released from...Ch. 18 - A parallel-plate air capacitor is made from two...Ch. 18 - In the previous problem, suppose the battery...Ch. 18 - A capacitor consists of two parallel plates, each...Ch. 18 - Electronic flash units for cameras contain a...Ch. 18 - In Figure 18.49, each capacitance C1 is 6.9 F and...Ch. 18 - Prob. 76PPCh. 18 - A helium ion (He++) that comes within about 10 fm...Ch. 18 - The maximum voltage at the center of a typical...Ch. 18 - How many moles of Na+ must move per unit area of...Ch. 18 - Prob. 80PPCh. 18 - Suppose that the change in Vm was caused by the...Ch. 18 - What is the minimum amount of work that must be...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
Why is it unlikely that two neighboring water molecules would be arranged like this?
Campbell Biology (11th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Answer the following questions for each compound: a. How many signals are in its 13C NMR spectrum? b. Which sig...
Organic Chemistry (8th Edition)
33. Consider the unbalanced chemical equation.
A chemistry student tries to balance the equation by placing th...
Introductory Chemistry (6th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY