Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 102P
The Pyrex glass mirror in a telescope has a diameter of 170 in. The temperature ranges from −16°C to 32°C on the location of the telescope. What is the maximum change in the diameter of the mirror, assuming that the glass can freely expand and contract?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Collectible coins are sometimes plated with gold to enhance their beauty and value. Consider a commemorative quarter-dollar advertised for sale at $4.98. It has a diameter of 24.3 mm, a thickness of 1.78 mm, and is completely covered with a layer of pure gold 0.214 µm thick. The volume of the plating is equal to the thickness of the layer multiplied by the area to which it is applied. The patterns on the faces of the coin and the grooves on its edge have a negligible effect on its area. Assume the price of gold is $14.1 per gram.
(a) Find the cost of the gold added to the coin.
(b) Does the cost of the gold significantly enhance the value of the coin?
Yes or No
Explain your answer.
The tube shown has a uniform wall thickness of 12 mm. Take P= 18 kN.
F
H
E
28 KN
P
28 KN
125 mm
75 mm
Determine the point where the neutral axis intersects line AB.
The point where the neutral axis intersects line AB is
mm above point A.
Using AMM, solve for:
a. Y. (mm)
b. ӨЕ (гad)
P= 128 kN
E = 200 GPa, I= 3.125x10° mm*
P (kN)
kN/m
75
60
kN/m
2m
1m
3m
3m
90 kN.m
A
B
E
Chapter 18 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 18 - The initial length L, change in temperature T, and...Ch. 18 - Figure 18-24 shows three linear temperature...Ch. 18 - Materials A, B, and C are solids that are at their...Ch. 18 - A sample A of liquid water and a sample B of ice,...Ch. 18 - Question 4 continued: Graphs b through f of Fig....Ch. 18 - Figure 18-26 shows three different arrangements of...Ch. 18 - Figure 18-27 shows two closed cycles on p-V...Ch. 18 - For which cycle in Fig. 18-27, traversed...Ch. 18 - Three different materials of identical mass are...Ch. 18 - A solid cube of edge length r, a solid sphere of...
Ch. 18 - A hot object is dropped into a thermally insulated...Ch. 18 - Suppose the temperature of a gas is 373.15 K when...Ch. 18 - Two constant-volume gas thermometers are...Ch. 18 - A gas thermometer is constructed of two...Ch. 18 - a In 1964, the temperature in the Siberian village...Ch. 18 - At what temperature is the Fahrenheit scale...Ch. 18 - On a linear X temperature scale, water freezes at...Ch. 18 - ILW Suppose that on a linear temperature scale X,...Ch. 18 - At 20C, a brass cube has edge length 30 cm. What...Ch. 18 - ILW A circular hole in an aluminum plate is 2.725...Ch. 18 - An aluminum flagpole is 33 m high. By how much...Ch. 18 - Prob. 11PCh. 18 - An aluminum-alloy rod has a length of 10.000 cm at...Ch. 18 - SSM Find the change in volume of an aluminum...Ch. 18 - When the temperature of a copper coin is raised by...Ch. 18 - ILW A steel rod is 3.000 cm in diameter at 25.00C....Ch. 18 - When the temperature of a metal cylinder is raised...Ch. 18 - SSM WWW An aluminum cup of 100 cm3 capacity is...Ch. 18 - At 20C, a rod is exactly 20.05 cm long on a steel...Ch. 18 - GO A vertical glass tube of length L = 1.280 000 m...Ch. 18 - GO In a certain experiment, a small radioactive...Ch. 18 - SSM ILW As a result of a temperature rise of 32 C,...Ch. 18 - One way to keep the contents of a garage from...Ch. 18 - SSM A small electric immersion healer is used to...Ch. 18 - A certain substance has a mass per mole of 50.0...Ch. 18 - Prob. 25PCh. 18 - What muss of butter, which has a usable energy...Ch. 18 - SSM Calculate the minimum amount of energy, in...Ch. 18 - How much water remains unfrozen after 50.2 kJ is...Ch. 18 - In a solar water heater, energy from the Sun is...Ch. 18 - A 0.400 kg simple is placed in a cooling apparatus...Ch. 18 - ILW What mass of steam at 100C must be mixed with...Ch. 18 - The specific heat of a substance varies with...Ch. 18 - Nonmetric version: a How long does a 2.0 105...Ch. 18 - GO Samples A and B are at different initial...Ch. 18 - An insulated Thermos contains l30 cm3 of hot...Ch. 18 - A 150 g copper bowl contains 220 g of water, both...Ch. 18 - A person makes a quantity of iced tea by mixing...Ch. 18 - A 0.530 kg sample of liquid water and a sample of...Ch. 18 - GO Ethyl alcohol has a boiling point of 78.0C, a...Ch. 18 - GO Calculate the specific heat of a metal from the...Ch. 18 - SSM WWW a Two 50 g ice cubes are dropped into 200...Ch. 18 - GO A 20.0 g copper ring at 0.000C has an inner...Ch. 18 - In Fig. 18-37, a gas sample expands from V0 to...Ch. 18 - GO A thermodynamic system is taken from stale A to...Ch. 18 - SSM ILW A gas within a closed chamber undergoes...Ch. 18 - Suppose 200 J of work is done on a system and 70.0...Ch. 18 - Prob. 47PCh. 18 - GO As a gas is held within a closed chamber, it...Ch. 18 - GO Figure 18-42 represents a closed cycle for a...Ch. 18 - GO A lab sample of gas is taken through cycle abca...Ch. 18 - A sphere of radius 0.500 m, temperature 27.0C, and...Ch. 18 - The ceiling of a single-family dwelling in a cold...Ch. 18 - SSM Consider the slab shown in Fig. 18-18. Suppose...Ch. 18 - If you were to walk briefly in space without a...Ch. 18 - ILW A cylindrical copper rod of length 1.2 m and...Ch. 18 - The giant hornet Vespa mandarinia japonica preys...Ch. 18 - Prob. 57PCh. 18 - A solid cylinder of radius r1 = 2.5 cm, length h1...Ch. 18 - Prob. 59PCh. 18 - GO Figure 18-46 shows the cross section of a wall...Ch. 18 - SSM A 5.0 cm slap has formed on an outdoor tank of...Ch. 18 - Leidenfrost effect. A water drop will last about 1...Ch. 18 - GO Figure 18-49 shows in cross section a wall...Ch. 18 - Prob. 64PCh. 18 - Ice has formed on a shallow pond, and a shady...Ch. 18 - GO Evaporative cooling of beverages. A cold...Ch. 18 - In the extrusion of cold chocolate from a tube,...Ch. 18 - Prob. 68PCh. 18 - Figure 18-51 displays a closed cycle for a gas....Ch. 18 - In a certain solar house, energy from the Sun is...Ch. 18 - A 0.300 kg sample is placed in a cooling apparatus...Ch. 18 - The average rate at which energy is conducted...Ch. 18 - What is the volume increase of an aluminum cube...Ch. 18 - In a series of experiment, block B is to be placed...Ch. 18 - Figure 18-54 displays a dosed cycle for a gas....Ch. 18 - Three equal-length straight rods, of aluminum,...Ch. 18 - SSM The temperature of a 0.700 kg cube of ice is...Ch. 18 - GO Icicles. Liquid water coats an active growing...Ch. 18 - SSM A sample of gas expands from an initial...Ch. 18 - Figure 18-56a shows a cylinder containing gas and...Ch. 18 - SSM A sample of gas undergoes a transition from an...Ch. 18 - Prob. 82PCh. 18 - SSM The temperature of a Pyrex disk is changed...Ch. 18 - a Calculate the rate at which body heat is...Ch. 18 - SSM A 2.50 kg Jump of aluminum is heated to 92.0C...Ch. 18 - A glass window pane is exactly 20 cm by 30 cm at...Ch. 18 - A recruit can join the semi-secret 300 F club at...Ch. 18 - A steel rod at 25.0C is bolted at both ends and...Ch. 18 - An athlete needs to lose weight and decides to do...Ch. 18 - Soon after Earth was formed, heat released by the...Ch. 18 - Prob. 91PCh. 18 - A rectangular plate of glass initially has the...Ch. 18 - Suppose that you intercept 5.0 103 of the energy...Ch. 18 - A thermometer of mass 0.0550 kg and of specific...Ch. 18 - A sample of gas expands from V1 = 1.0 m3 and p1 =...Ch. 18 - Figure 18-59 shows a composite bar of length L =...Ch. 18 - On finding your stove out of order, you decide to...Ch. 18 - The p-V diagram in the Fig. 18-60 shows two paths...Ch. 18 - A cube of edge length 6.0 106 m, emissivity 0.75,...Ch. 18 - A flow calorimeter is a device used to measure the...Ch. 18 - An object of mass 6.00 kg falls through a height...Ch. 18 - The Pyrex glass mirror in a telescope has a...Ch. 18 - The area A of a rectangular plate is ab = 1.4 m2....Ch. 18 - Consider the liquid in a barometer whose...Ch. 18 - A pendulum clock with a pendulum made of brass is...Ch. 18 - Prob. 106PCh. 18 - Prob. 107PCh. 18 - A 1700 kg Buick moving at 83 km/h brakes to a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The name of three things needs to be written due to which rate of reaction between two liquids can be increased...
Living By Chemistry: First Edition Textbook
What distinguishes the mass spectrum of 2,2-dimethylpropane from the mass spectra of pentane and isopentane?
Organic Chemistry (8th Edition)
1. The correct sequence of levels forming the structural hierarchy is
A. (a) organ, organ system, cellular, che...
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
In a population, what is the consequence of inbreeding? Does inbreeding change allele frequencies? What is the ...
Genetic Analysis: An Integrated Approach (3rd Edition)
What color are Gram-negative organisms after Gram staining? What color are Gram-positive organisms?
Microbiology: Principles and Explorations
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 10 40C1). At room temperature (20.0°C), the frames have circular lens A pair of eyeglass frames are made of an epoxy plastic (coefficient of linear expansion = 1.30 holes 2.23 cm in radius. To what temperature must the frames be heated if lenses 2.24 cm in radius are to be inserted into them? °Carrow_forwardA gold filament of length L = 12 cm when its temperature is 20° C is heated up to a temperature of 400° C. What is the length of the filament at this temperature? a= 14x 106 P C for gold %3Darrow_forwardA small lab experiment has 7.9 x 1040 molecules inside a 1.0 L container. If the temperature is set to 508 K, what pressure will the molecules exert on the container? P = Pa %3Darrow_forward
- 三 111. A cylindrical cistern, constructed below ground level, is 3.0 m in diameter and 2.0 m deep and is filled to the brim with water. A small object rests on the bottom of the cistern at its center. How far from the edge of the cistern can a girl whose eyes are 1.2 m from the ground stand and still see the object? sh sh 112. Consider a common mirage formed by superheated air just above a roadway. A truck driver whose eyes are 2.00 m above the road, where n= 1.000 3, looks forward. She has the illusion of seeing a patch of water ahead on the road, where her line of sight makes an angle of 1.20° below the horizontal. Find the index of refraction of the air just above the road surface. [Hint: Treat this as a problem involving total internal reflection.] 1. ap th 113. A light ray strikes a flat piece of glass at an angle of incidence 60° The index of refraction of the glass is 1.5. The thickness of the glass is 2 cm. Trace the light ray until it emerges from the glass. a. 509 Air Glass…arrow_forwardA scuba diver uses an empty vertical tube, closed at the top and open at the bottom, to measure her depth below sea level when diving in the ocean. The tube is 7.10 cm long. She dives below the surface until the water has risen into the tube a distance of 3.19 cm from the open end of the tube. Assuming the temperature of the air in the tube stays constant during the dive, what is the diver's depth at this point? The average density of sea water is 1,030 kg/m3.arrow_forwardA flat piece of glass is supported horizontally above the flat end of a 10.0-cm-long metal rod that has its lower end rigidly fixed. The thin film of air between the rod and the glass is observed to be bright when illuminated by light of wavelength 500 nm. As the temperature is slowly increased by 25.0°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?arrow_forward
- Liquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r = 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 94 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 × 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour?arrow_forwardLiquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r= 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 89 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 x 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour? i 0.34 kgarrow_forwardReview. (a) Derive an expression for the buoyant force on a spherical balloon, submerged in water, as a function of the depth h below the surface, the volume Vi of the balloon at the surface, the pressure P0 at the surface, and the density w of the water. Assume the water temperature does not change with depth, (b) Does the bouyant force increase or decrease as the balloon is submerged? (c) At what depth is the buoyant force one-half the surface value?arrow_forward
- A sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forwardAn expensive vacuum system can achieve a pressure as low as 1.00 x 10-7 N/m² at 25.5 °C. How many atoms N are there in a cubic centimeter at this pressure and temperature? The Boltzmann constant k = 1.38 x 10-23 J/K. N = atomsarrow_forwardAn oxygen molecule is moving near the earth's surface. Another oxygen molecule is moving in the ionosphere (the uppermost part of the earth's atmosphere) where the Kelvin temperature is 3.06 times greater. Determine the ratio of the translational rms speed in the ionosphere to that near the earth's surface.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY